Skip to main content
Log in

Tuning Optical Discs for Plasmonic Applications

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

We present simple physical and chemical procedures that allow tuning and modification of the topography of gratings present in optical storage discs into geometries optimal for grating coupled plasmon resonance excitation. After proper metal coating, the tuned surfaces exhibit sharp plasmon resonances that can be excited at wavelengths ranging from 260 nm to over 2.7 μm with relatively high quality factors. As an immediate exemplary application, use of such optimized gratings in aqueous medium for refractive index measurement is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Homola J, Yee SS, Gauglitz G (1999) Surface plasmon resonance sensors: review. Sens Action B 54:3–15

    Article  Google Scholar 

  2. Nelson BP, Grimsrud TE, Liles MR, Goodman RM, Corn RM (2001) Surface plasmon resonance imaging measurements of DNA and RNA hybridization adsorption onto DNA microarrays. Anal Chem 73(1):1–7

    Article  CAS  Google Scholar 

  3. Brongersma ML, Hartman JW, Atwater HA (2000) Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit. Phys Rev B 62(24):16356–16359

    Article  Google Scholar 

  4. Maier SA, Atwater HA (2005) Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures. J Appl Phys 98(1):011101

    Article  Google Scholar 

  5. Naik RR, Stringer SJ, Agarwal G, Jones SE, Stone MO (2002) Biomimetic synthesis and patterning of silvernanoparticles. Nat Mater 1:169–172

    Article  CAS  Google Scholar 

  6. Kocabas A, Ertas G, Senlik SS, Aydinli A (2008) Plasmonic band gap structures for surface-enhanced Raman scattering. Opt Express 16(17):12469–12477

    Article  CAS  Google Scholar 

  7. Kocabas A, Senlik SS, Aydinli A (2008) Plasmonic band gap cavities on biharmonic gratings. Phys Rev B 77(19):195130

    Article  Google Scholar 

  8. Zou S, Janel N, Schatz GC (2004) Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes. J Chem Phys 120(23):10871–10875

    Article  CAS  Google Scholar 

  9. Homola J (2003) Present and future of surface plasmon resonance biosensors. Anal Bioanal Chem 377:528–539

    Article  CAS  Google Scholar 

  10. Singh BK, Hillier AC (2006) Surface plasmon resonance imaging of biomolecular interactions on a grating-based sensor array. Anal Chem 78(6):2009–2018

    Article  CAS  Google Scholar 

  11. Maier SA (2006) Plasmonics: the promise of highly integrated optical devices. IEEE J Sel Top Quant Electron 12(6):1671–1677

    Article  CAS  Google Scholar 

  12. Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424:824–830

    Article  CAS  Google Scholar 

  13. Raether H (1988) Surface plasmons on smooth and rough surfaces and on gratings, chapter 6. Springer-Verlag, Berlin

    Google Scholar 

  14. Maier SA (2007) Plasmonics: fundamentals and applications, chapter 5. Springer, New York

    Google Scholar 

  15. Fontana E (2004) Theoretical and experimental study of the surface plasmon resonance effect on a recordable compact disk. Appl Opt 43(1):79–87

    Article  Google Scholar 

  16. Sedoglavich N, Kunnemeyer R, Talele SR, Sharpe JC (2008) Phase-polarisation contrast for surface plasmon resonance based on low cost grating substrates. Current Applied Physics 8:351–354

    Article  Google Scholar 

  17. Kneipp K, Kneipp H, Itzkan I, Dasari RR, Feld MS (2002) Surface enhanced Raman scattering and biophysics. J Phys Chem 14:597–624

    Google Scholar 

  18. Kahl M, Voges E (2000) Analysis of plasmon resonance and surface-enhanced Raman scattering on periodic silver structures. Phys Rev B 61(20):14078–14088

    Article  CAS  Google Scholar 

  19. Mank AJG, Kuiper AET, Nulens HAG, Feddes B, Wei G (2007) Detection of recording marks on digital versatile discs and blu-ray discs using conductive atomic force microscopy. Jpn J Appl Phys 46(9A):5813–5820

    Article  CAS  Google Scholar 

  20. Gurel K, Kaplan B, Guner H, Bayindir M, Dana A (2009) A compact filter based on anomalous transmission in grating coupled plasmon resonance. Appl Phys Lett (in press)

  21. Homola J, Koudelab I, Yee SS (1999) Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison. Sens Act B 54:16–24

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by TUBITAK under Project No. 106T348, 106G090, and 107T547. MB acknowledges support from the Turkish Academy of Sciences Distinguished Young Scientist Award (TUBA GEBIP). This work was performed at the UNAM-Institute of Materials Science and Nanotechnology, which is supported by the State Planning Organization of Turkey through the National Nanotechnology Research Center Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aykutlu Dana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaplan, B., Guner, H., Senlik, O. et al. Tuning Optical Discs for Plasmonic Applications. Plasmonics 4, 237–243 (2009). https://doi.org/10.1007/s11468-009-9099-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-009-9099-x

Keywords

Navigation