Skip to main content
Log in

Theoretical and Experimental Investigation of Enhanced Transmission Through Periodic Metal Nanoslits for Sensing in Water Environment

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Experimental and theoretical study of sensors based on enhanced transmission through periodic metal nanoslits is presented. Our approach consists of the design of one-dimensional nanoslits array and its application in sensing for water quality control. Rigorous coupled waves analysis was used for the design and fit to the experimental data. Two types of surface plasmon resonance excitations are shown to be possible, one at the upper grating–analyte interface and one at the lower grating–substrate interface. This latter resonance is shown to be affected by the multiple interference or cavity-type effects. Those structures were fabricated by deposition of the metal layer and electron beam lithography of the nanostructure. We found that Ag-based periodic array exhibits the highest sensitivity to refractive index variations. Sensitivity enhancement was measured by ethanol concentrations in water. Stability of the Ag-based sensor was improved by covering the grating with less than 15 nm polymethyl methacrylate capping layer without deterioration of the sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Arya Sunil K, Chaubey A, Malhotra BD (2006) Proc Indian Natn Sci Acad 72(4):249–266

    Google Scholar 

  2. Lubbers DW, Opitz N (1975) Zeitschrift Für Naturforschung C 30:532–533

    CAS  Google Scholar 

  3. Liedberg B, Nylander C, Sundstrom I (1983) Sens Actuators 4:299–304

    Article  CAS  Google Scholar 

  4. Homola J, Sinclair S, Gauglitz GY (1999) Sens Actuators B 54:3–15

    Article  Google Scholar 

  5. Ebbesen TW, Lezec HJ, Ghaemi HF, Thio T, Wolff PA (1998) Nature 391:667–669

    Article  CAS  Google Scholar 

  6. Bethe HA (1944) Phys Rev 66:163–182

    Article  Google Scholar 

  7. Lee KL, Wang KL, Wei PK (2007) J Biomed Opt 12(4):044023. doi:10.1117/1.2772296

    Article  Google Scholar 

  8. Lee KL, Wang KL, Wei PK (2008) Plasmonics 3:119–125

    Article  CAS  Google Scholar 

  9. García-Vidal FJ, Lezec HJ, Ebbesen TW, Martín-Moreno L (2003) Phys Rev Lett 90:213901

    Article  Google Scholar 

  10. Ma J, Liu S, Zhang D, Yao J, Xu C, Shao J, Jin Y, Fan Z (2008) J Opt A Pure Appl Opt 10:035002

    Article  Google Scholar 

  11. Rajan S, Chand S, Gupta BD (2006) Sens Actu B 115:344

    Article  Google Scholar 

  12. Brolo AG, Gordon R, Leathem B, Kavanagh KL (2004) Langmuir 20(12):4813–4815

    Article  CAS  Google Scholar 

  13. Karabchevsky A, Krasnyakov O, Abdulhalim I, Hadad B, Goldner A, Auslender M, Hava S (2009) Photonics Nanostruct Fundam Appl. doi:10.1016/j.photonics.2009.05.001

  14. Abdulhalim I, Zourob MD, Lakhtakia A (2008) Electromagnetics 28:214–242

    Article  Google Scholar 

  15. Ding Y, Cao ZQ, Shen QS (2003) Opt Quantum Electron 35:1091–1097

    Article  Google Scholar 

  16. Cao Q, Lalanne P (2002) Phys Rev Lett 88:057403. doi:0.1103/PhysRevLett.88.057403

    Article  Google Scholar 

  17. Fan W, Zhang S, Minhas B, Malloy KL, Brueck RJ (2005) Phys Rev Lett 94:033902

    Article  Google Scholar 

  18. Koerkamp KJ, Enoch S, Segerink FB, Van Hulst NF, Kuipers L (2004) Phys Rev Lett 92:183901

    Article  Google Scholar 

  19. Zhang JZ, Noguez C (2008) Plasmonics 3:127–150

    Article  CAS  Google Scholar 

  20. Sobnack MB, Tan WC, Wanstall NP, Preist TW, Sambles JR (1998) Phys Rev Lett 80:5667–5669

    Article  CAS  Google Scholar 

  21. Gordon R (2006) Phys Rev B 73:153405. doi:10.1103/PhysRevB.73.153405

    Article  Google Scholar 

  22. Pang Y, Genet C, Ebbesen TW (2007) Opt Commun 280:10–15. doi:10.1016/j.optcom.2007.07.063

    Article  CAS  Google Scholar 

  23. Yang Q, Cai F, Zhao LR, Huang X (2008) Surf Coat Technol 203:606–609. doi:10.1016/j.surfcoat.2008.04.072

    Article  CAS  Google Scholar 

  24. Chuai C, Almdal K, Jorgensen JL (2004) J Appl Polym Sci 91:609–620

    Article  CAS  Google Scholar 

  25. Suzuki H, Sugimoto M, Matsui Y, Kondoh J (2006) Meas Sci Technol 17:1547–1552. doi:10.1088/0957-0233/17/6/036

    Article  CAS  Google Scholar 

  26. Weast RC, Astle MJ (1979) CRC handbook of chemistry and physics. CRC Press, Boca Raton

    Google Scholar 

  27. Barnes WL, Dereux A, Ebbesen TW (2003) Nature 424:824–830. doi:10.1038/nature01937

    Article  CAS  Google Scholar 

  28. Lahav A, Auslender M, Abdulhalim I (2008) Opt Lett 33:2539–2541

    Article  CAS  Google Scholar 

  29. Lahav A, Shalabaney A, Abdulhalim I (2009) J Nanophotonics 3:031501

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Israeli Ministry of Science under the “Tashtiot” funding program. The help of Mr. Evgeni Eltzov and Prof. Robert Marks in the preparation of the biological samples is highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alina Karabchevsky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karabchevsky, A., Krasnykov, O., Auslender, M. et al. Theoretical and Experimental Investigation of Enhanced Transmission Through Periodic Metal Nanoslits for Sensing in Water Environment. Plasmonics 4, 281–292 (2009). https://doi.org/10.1007/s11468-009-9104-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-009-9104-4

Keywords

Navigation