Skip to main content
Log in

The Optimal Aspect Ratio of Gold Nanorods for Plasmonic Bio-sensing

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

The plasmon resonance of metal nanoparticles shifts upon refractive index changes of the surrounding medium through the binding of analytes. The use of this principle allows one to build ultra-small plasmon sensors that can detect analytes (e.g., biomolecules) in volumes down to attoliters. We use simulations based on the boundary element method to determine the sensitivity of gold nanorods of various aspect ratios for plasmonic sensors and find values between 3 and 4 to be optimal. Experiments on single particles confirm these theoretical results. We are able to explain the optimum by showing a corresponding maximum for the quality factor of the plasmon resonance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jain PK, Huang WY, El-Sayed MA (2007) On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation. Nano Lett 7(7):2080–2088

    Article  CAS  Google Scholar 

  2. Sönnichsen C, Reinhard BM, Liphardt J, Alivisatos AP (2005) A molecular ruler based on plasmon coupling of single gold and silver nanoparticles. Nat Biotechnol 23(6):741–745

    Article  Google Scholar 

  3. Wang HY, Reinhard BM (2009) Monitoring simultaneous distance and orientation changes in discrete dimers of DNA-linked gold nanoparticles. J Phys Chem C 113(26):11215–11222

    Article  CAS  Google Scholar 

  4. Reinhard BM, Siu M, Agarwal H, Alivisatos AP, Liphardt J (2005) Calibration of dynamic molecular rule based on plasmon coupling between gold nanoparticles. Nano Lett 5(11):2246–2252

    Article  CAS  Google Scholar 

  5. Sönnichsen C, Alivisatos AP (2005) Gold nanorods as novel nonbleaching plasmon-based orientation sensors for polarized single-particle microscopy. Nano Lett 5(2):301–304

    Article  Google Scholar 

  6. Bingham JM, Willets KA, Shah NC, Andrews DQ, Van Duyne RP (2009) Localized surface plasmon resonance imaging: simultaneous single nanoparticle spectroscopy and diffusional dynamics. J Phys Chem C 113(39):16839–16842

    Article  CAS  Google Scholar 

  7. Pierrat S, Hartinger E, Faiss S, Janshoff A, Sonnichsen C (2009) Rotational dynamics of laterally frozen nanoparticles specifically attached to biomembranes. J Phys Chem C 113(26):11179–11183

    Article  CAS  Google Scholar 

  8. Schubert O, Becker J, Carbone L, Khalavka Y, Provalska T, Zins I, Sönnichsen C (2008) Mapping the polarization pattern of plasmon modes reveals nanoparticle symmetry. Nano Lett 8(8):2345–2350

    Article  CAS  Google Scholar 

  9. Novo C, Funston AM, Mulvaney P (2008) Direct observation of chemical reactions on single gold nanocrystals using surface plasmon spectroscopy. Nat Nanotechnol 3(10):598–602

    Article  CAS  Google Scholar 

  10. Carbone L, Jakab A, Khalavka Y, Sönnichsen C (2009) Light-controlled one-sided growth of large plasmonic gold domains on quantum rods observed on the single particle level. Nano Lett 9(11):3710–3714

    Article  CAS  Google Scholar 

  11. Perez-Juste J, Pastoriza-Santos I, Liz-Marzan LM, Mulvaney P (2005) Gold nanorods: synthesis, characterization and applications. Coord Chem Rev 249(17–18):1870–1901

    Article  CAS  Google Scholar 

  12. Homola J, Yee SS, Gauglitz G (1999) Surface plasmon resonance sensors: review. Sens Actuators B Chem 54(1–2):3–15

    Article  Google Scholar 

  13. Sönnichsen C, Geier S, Hecker NE, von Plessen G, Feldmann J, Ditlbacher H, Lamprecht B, Krenn JR, Aussenegg FR, Chan VZH, Spatz JP, Moller M (2000) Spectroscopy of single metallic nanoparticles using total internal reflection microscopy. Appl Phys Lett 77(19):2949–2951

    Article  Google Scholar 

  14. Raschke G, Kowarik S, Franzl T, Sönnichsen C, Klar TA, Feldmann J, Nichtl A, Kurzinger K (2003) Biomolecular recognition based on single gold nanoparticle light scattering. Nano Lett 3(7):935–938

    Article  CAS  Google Scholar 

  15. Sönnichsen C, Franzl T, Wilk T, von Plessen G, Feldmann J, Wilson O, Mulvaney P (2002) Drastic reduction of plasmon damping in gold nanorods. Phys. Rev. Lett. 88(7):077402

    Google Scholar 

  16. Becker J, Schubert O, Sönnichsen C (2007) Gold nanoparticle growth monitored in situ using a novel fast optical single-particle spectroscopy method. Nano Lett 7(6):1664–1669

    Article  CAS  Google Scholar 

  17. McFarland AD, Van Duyne RP (2003) Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity. Nano Lett 3(8):1057–1062

    Article  CAS  Google Scholar 

  18. Baciu CL, Becker J, Janshoff A, Sönnichsen C (2008) Protein-membrane interaction probed by single plasmonic nanoparticles. Nano Lett 8(6):1724–1728

    Article  CAS  Google Scholar 

  19. Lee KS, El-Sayed MA (2006) Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition. J Phys Chem 110(39):19220–19225

    CAS  Google Scholar 

  20. Khalavka Y, Becker J, Sönnichsen C (2009) Synthesis of rod-shaped gold nanorattles with improved plasmon sensitivity and catalytic activity. J Am Chem Soc 131(5):1871–1875

    Article  CAS  Google Scholar 

  21. Liu N, Weiss T, Mesch M, Langguth L, Eigenthaler U, Hirscher M, Sönnichsen C, Giessen H (2009) Planar Metamaterial Analogue of Electromagnetically Induced Transparency for Plasmonic Sensing. Nano Lett. doi:10.1021/nl902621d

  22. Becker J, Zins I, Jakab A, Khalavka Y, Schubert O, Sönnichsen C (2008) Plasmonic focusing reduces ensemble linewidth of silver-coated gold nanorods. Nano Lett 8(6):1719–1723

    Article  CAS  Google Scholar 

  23. Hohenester U, Krenn J (2005) Surface plasmon resonances of single and coupled metallic nanoparticles: A boundary integral method approach. Phys. Rev. B 72(19):195429

    Google Scholar 

  24. de Abajo FJG, Howie A (2002) Retarded field calculation of electron energy loss in inhomogeneous dielectrics. Phys. Rev. B 65(11):115418

    Google Scholar 

  25. Burgin J, Liu MZ, Guyot-Sionnest P (2008) Dielectric sensing with deposited gold bipyramids. J Phys Chem 112(49):19279–19282

    CAS  Google Scholar 

  26. Sherry LJ, Chang SH, Schatz GC, Van Duyne RP, Wiley BJ, Xia YN (2005) Localized surface plasmon resonance spectroscopy of single silver nanocubes. Nano Lett 5(10):2034–2038

    Article  CAS  Google Scholar 

  27. Johnson PB, Christy RW (1972) Optical Constants of the Noble Metals. Phys Rev B 6(12):4370-4379

    Article  CAS  Google Scholar 

  28. Prescott SW, Mulvaney P (2006) Gold nanorod extinction spectra. c 99(12):123504

  29. Bryant GW, De Abajo FJG, Aizpurua J (2008) Mapping the plasmon resonances of metallic nanoantennas. Nano Lett 8(2):631–636

    Article  CAS  Google Scholar 

  30. Liu MZ, Guyot-Sionnest P (2004) Synthesis and optical characterization of Au/Ag core/shell nanorods. J Phys Chem B 108(19):5882–5888

    Article  CAS  Google Scholar 

  31. Bohren CF, Huffman DR (1983) Absorption and Scattering of Light by Small Particles. Wiley

  32. Osborn JA (1945) Demagnetizing factors of the general ellipsoid. Phys Rev 67(11–1):351–357

    Article  Google Scholar 

  33. Sönnichsen C (2001) Plasmons in metal nanostructures. Cuvillier Verlag Göttingen

  34. Lambrecht A, Pirozhenko I, Duraffourg L, Andreucci P (2007) The Casimir effect for silicon and gold slabs. Epl 77(4):44006

    Google Scholar 

  35. Cao M, Wang M, Gu N (2009) Optimized surface plasmon resonance sensitivity of gold nanoboxes for sensing applications. J Phys Chem C 113(4):1217–1221

    Article  CAS  Google Scholar 

  36. Nikoobakht B, El-Sayed MA (2003) Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem Mater 15(10):1957–1962

    Article  CAS  Google Scholar 

Download references

Acknowledgment

We acknowledge financial support by the DFG through the Emmy Noether Program (SO712/1-3), the MAINZ graduate school of excellence, and the Graz Advanced School of Science (NAWI GASS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carsten Sönnichsen.

Appendix

Appendix

Methods

Simulations based on boundary element method

In our computational approach, we discretize the surface of the nanoparticle by a set of triangles and match the electromagnetic potentials at the triangle centers. By fulfilling the boundary conditions imposed by Maxwell’s equations through auxiliary surface charges and currents, we end up with a generic and flexible scheme that allows us to compute the optical properties of arbitrarily shaped nanoparticles with complex geometry embedded in dielectric environments.

The dielectric function of the gold nanorods was extracted from optical data [27] and the chosen mesh sizes allow for a spatial resolution of approximately 1 nm.

Determination of S, FOM, FOM*, and FOM*layer

We calculated the light scattering cross-section C sca for every particle shape (diameter 20 nm, length from 20 nm to 160 nm in steps of 2 nm) in n 1 = 1.33 and in n 2 = 1.34 as a function of wavelengths λ (in steps of 1 nm).

The FOM* was calculated according to the following equation:

$$ {\hbox{FOM}}* = {\left( {\frac{{\left| {{\text{Csc}}{{\text{a}}_1}(\lambda ) - {\text{Csc}}{{\text{a}}_2}(\lambda )} \right|}}{{1/2 \times ({\hbox{Csc}}{{\hbox{a}}_1}(\lambda ) + {\hbox{Csc}}{{\hbox{a}}_2}(\lambda ))}}} \right)_{\max }}/({n_2} - {n_1}) $$

The FOM*layer was calculated in the same way in the quasi-static approximation for spheroids for layer thicknesses l = 0.01 nm to 10 nm in steps of 1 nm (0.01 nm until the first nanometer).

Gold nanorods preparation

Gold nanorods were synthesized according to the seeded growth procedure published by Nikoobakht et al. [36]. In this two-step synthesis, preformed seeds grow into rods in a concentrated surfactant solution. The samples used in this work were characterized by ensemble extinction spectroscopy and transmission electron microscopy to obtain the mean diameters and lengths of the different samples. The samples we used had the following properties:

Name

λ res

Width

Length

LC 12-1

634

57 ± 6

28 ± 4

S702

700

49 ± 4

18 ± 2

S740

743

55 ± 6

18 ± 3

Single particle spectroscopy

To investigate the spectral shift by changes in the refractive index of the environment on the single particle level, we dilute the nanorod suspensions 1:100 with distilled water and rinse them for 5 min through a flat glass capillary connected to PET tubing. Subsequent rinsing of 1 M sodium chloride solution for 1 min can increase the number of immobilized particles. Afterwards, the glass capillary is rinsed for at least 15 min with distilled water (n = 1.333) to remove as many of the molecules as possible that were attached to the particle surface, and the scattering spectra of all particles in the field of view recorded. After rinsing the glass capillary with glucose solution (25 wt.% n = 1.372) for 15 min, we again investigate the scattering spectra of the same particles and determine the quantities listed in Table 1.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Becker, J., Trügler, A., Jakab, A. et al. The Optimal Aspect Ratio of Gold Nanorods for Plasmonic Bio-sensing. Plasmonics 5, 161–167 (2010). https://doi.org/10.1007/s11468-010-9130-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-010-9130-2

Keywords

Navigation