Skip to main content
Log in

Plasmon-Assisted Optical Curtains

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

We predict an optical curtain effect, i.e., formation of a spatially invariant light field as light emerges from a set of periodic metallic nano-objects. The underlying physical mechanism of generation of this unique optical curtain can be explained in both the spatial domain and the wave-vector domain. In particular, in each period, we use one metallic nanostrip to equate the amplitudes of lights impinging on the openings of two metallic nanoslits and also shift their phases by π difference. We elaborate the influence on the output effect from some geometrical parameters like the periodicity, the slit height, and so on. By controlling the light illuminated on metallic subwavelength apertures, it is practical to generate optical curtains of arbitrary forms, which may open new routes of plasmonic nanolithography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Raether H (1988) Surface plasmons on smooth and rough surfaces and on gratings. Springer, New York

    Google Scholar 

  2. Xia Y, Halas N (2005) Shape-controlled synthesis and surface plasmonic properties of metallic nanostructures. MRS Bull 30:338–343

    CAS  Google Scholar 

  3. Volakis JL, Chatterjee A, Kempel JL (1998) Finite element method for electromagnetics. IEEE Press, New York

    Book  Google Scholar 

  4. Ebbesen TW, Lezec HJ, Ghaemi HF, Thio T, Wolff PA (1998) Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391:667–669

    Article  CAS  Google Scholar 

  5. Fang NX, Lee H, Sun C, Zhang X (2005) Sub-diffraction-limited optical imaging with a silver superlens. Science 308:534–537

    Article  CAS  Google Scholar 

  6. Maier SA (2007) Plasmonics: fundamentals and applications. Springer, New York

    Google Scholar 

  7. Koller DM, Hohenau A, Ditlbacher H, Galler N, Reil F, Aussenegg FR, Leitner A, List EJW, Krenn JR (2008) Organic plasmon-emitting diode. Nat Photon 2:684–687

    Article  CAS  Google Scholar 

  8. Noginov MA, Zhu G, Belgrave AM, Bakker R, Shalaev VM, Narimanov EE, Stout S, Herz E, Suteewong T, Wiesner U (2009) Demonstration of a spaser-based nanolaser. Nature 460:1110–1112

    Article  CAS  Google Scholar 

  9. Kabashin AV, Evans P, Pastkovsky S, Hendren W, Wurtz GA, Atkinson R, Pollard R, Podolskiy VA, Zayats (2009) Plasmonic nanorod metamaterials for biosensing. Nat Mater 8:867–871

    Article  CAS  Google Scholar 

  10. Ferry VE, Sweatlock LA, Pacifici D, Atwater HA (2008) Plasmonic nanostructure design for efficient light coupling into solar cells. Nano Lett 8:4391

    Article  CAS  Google Scholar 

  11. Levene MJ, Korlach J, Turner SW, Foquet M, Craighead HG, Webb WW (2003) Zero-mode waveguides for single-molecule analysis at high concentrations. Science 299:682–686

    Article  CAS  Google Scholar 

  12. Tang L, Kocabas SE, Latif S, Okyay AK, Ly-Gagnon D-S, Saraswat KC, Miller DAB (2008) Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna. Nat Photon 2(4):226–229

    Article  CAS  Google Scholar 

  13. Lezec HJ, Degiron A, Devaux E, Linke RA, Martin-Moreno L, Garcia-Vidal FJ, Ebbesen TW (2002) Beaming light from a subwavelength aperture. Science 297:820

    Article  CAS  Google Scholar 

  14. Sun Z, Kim HK (2004) Refractive transmission of light and beam shaping with metallic nano-optic lenses. Appl Phys Lett 85:642

    Article  CAS  Google Scholar 

  15. Xie Y, Zakharian AR, Moloney JV, Mansuripur M (2004) Transmission of light through slit apertures in metallic films. Opt Express 12:6106–6121

    Article  Google Scholar 

  16. Xie Y, Zakharian A, Moloney J, Mansuripur M (2005) Transmission of light through a periodic array of slits in a thick metallic film. Opt Express 13:4485–4491

    Article  Google Scholar 

  17. Kobyakov A, Zakharian AR, Mafi A, Darmanyan SA (2008) Semi-analytical method for light interaction with 1D-periodic nanoplasmonic structures. Opt Express 16:8938–8957

    Article  Google Scholar 

  18. Srituravanich W, Fang N, Sun C, Luo Q, Zhang X (2004) Plasmonic nanolithography. Nano Lett 4:1085

    Article  CAS  Google Scholar 

  19. Shao DB, Chen SC (2006) Direct patterning of three-dimensional periodic nanostructures by surface-plasmon-assisted nanolithography. Nano Lett 6:2279

    Article  CAS  Google Scholar 

  20. Wang CM, Chang YC, Tsai DP (2009) Spatial filtering by using cascading plasmonic gratings. Opt Express 17:6218–6223

    Article  CAS  Google Scholar 

  21. He SL, Cui YX, Ye YQ, Zhang P, Jin Y (2009) Optical nanoatennas and metamaterials. Mater Today 12:16–24

    Article  CAS  Google Scholar 

  22. Cui YX, Hu J, He SL (2009) Nanocavity antenna array assisted enhancing extraordinary optical transmission of light through a metallic nanoslit. J Opt Soc Am B 26:2131

    Article  CAS  Google Scholar 

  23. Jeon S, Park JU, Cirelli R, Yang S, Heitzman CE, Braun PV, Kenis PJA, Rogers JA (2004) Fabricating complex three-dimensional nanostructures with high-resolution conformable phase masks. Proc Natl Acad Sci USA 101:12428–12433

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas X. Fang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cui, Y., Xu, J., He, S. et al. Plasmon-Assisted Optical Curtains. Plasmonics 5, 369–374 (2010). https://doi.org/10.1007/s11468-010-9152-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-010-9152-9

Keywords

Navigation