Skip to main content
Log in

Optical Curtain Effect: Extraordinary Optical Transmission Enhanced by Antireflection

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In this paper, we employ an antireflective coating which comprises inverted π-shaped metallic grooves to manipulate the behaviour of a transverse-magnetic (TM)-polarised plane wave transmitted through a periodic nanoslit array. At normal incidence, such scheme cannot only retain the optical curtain effect in the output region but also generate the extraordinary transmission of light through the nanoslits with the total transmission efficiency as high as 90 %. Besides, we show that the spatially invariant field distribution in the output region as well as the field distribution of resonant modes around the inverted π-shaped grooves can be reproduced immaculately when the system is excited by an array of point sources beneath the inverted π-shaped grooves. Furthermore, we investigate the influence of centre groove and side-corners of the inverted π-shaped grooves on suppressing the reflection of light, respectively. Based on our work, it shows promising potential in applications of enhancing the extraction efficiency as well as controlling the beaming pattern of light emitting diodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ebbesen TW, Lezec HJ, Ghaemi HF, Thio T, Wolff PA (1998) Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391:667–669

    Article  CAS  Google Scholar 

  2. Maier SA (2007) Plasmonics: fundamentals and applications. Springer, New York

    Google Scholar 

  3. Genet C, Ebbesen TW (2007) Light in tiny holes. Nature 445:39–46

    Article  CAS  Google Scholar 

  4. Ozbay E (2006) Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311:189–193

    Article  CAS  Google Scholar 

  5. Cui Y, He S (2009) Enhancing extraordinary transmission of light through a metallic nanoslit with a nanocavity antenna. Opt Lett 34:16–18

    Article  CAS  Google Scholar 

  6. Cai L, Li G, Wang Z, Xu A (2010) Interference and horizontal Fabry–Perot resonance on extraordinary transmission through a metallic nanoslit surrounded by grooves. Opt Lett 35:127–129

    Article  Google Scholar 

  7. Rui G, Zhan Q, Ming H (2011) Nanoantenna-assisted extraordinary optical transmission under radial polarization illumination. Plasmonics 6:521–525

    Article  CAS  Google Scholar 

  8. Shcherbakov MR, Dobynde MI, Dolgova TV, Tsai DP, Fedyanin AA (2010) Full Poincare sphere coverage with plasmonic nanoslit metamaterials at Fano resonance. Physical Review B 82:193402

    Article  Google Scholar 

  9. Gallinet B, Martin OJF (2011) Influence of electromagnetic interactions on the line shape of plasmonic Fano resonances. ACS Nano 5:8999–9008

    Article  CAS  Google Scholar 

  10. Lee SJ, Morrill AR, Moskovits M (2006) Hot spots in silver nanowire bundles for surface-enhanced Raman spectroscopy. J Am Chem Soc 128:2200–2201

    Article  CAS  Google Scholar 

  11. Bek A, Jansen R, Ringler M, Mayilo S, Klar TA, Feldmann J (2008) Fluorescence enhancement in hot spots of AFM-designed gold nanoparticle sandwiches. Nano Letters 8:485–490

    Article  CAS  Google Scholar 

  12. Dawn KG, Dennis GH (2002) Emission through one of two metal electrodes of an organic light-emitting diode via surface-plasmon cross coupling. Appl Phys Lett 81:4315–4317

    Article  Google Scholar 

  13. Frischeisen J, Niu Q, Abdellah A, Kinzel JB, Gehlhaar R, Scarpa G, Adachi C, Lugli P, Brutting W (2011) Light extraction from surface plasmons and waveguide modes in an organic light-emitting layer by nanoimprinted gratings. Opt Express 19:A7–A19

    Article  CAS  Google Scholar 

  14. Atwater HA, Polman A (2010) Plasmonics for improved photovoltaic devices. Nat Mater 9:205–213

    Article  CAS  Google Scholar 

  15. Cui Y, Fung KH, Xu J, Ma H, Jin Y, He S, Fang NX (2012) Ultrabroadband light absorption by a sawtooth anisotropic metamaterial Slab. Nano Letters 12:1443–1447

    Article  CAS  Google Scholar 

  16. Homola J (2008) Surface plasmon resonance sensors for detection of chemical and biological species. Chem Rev 108:462–493

    Article  CAS  Google Scholar 

  17. Chen S, Svedendahl M, Kall M, Gunnarsson L, Dmitriev A (2009) Ultrahigh sensitivity made simple: nanoplasmonic label-free biosensing with an extremely low limit-of-detection for bacterial and cancer diagnostics. Nanotechnology 20:434015

    Article  CAS  Google Scholar 

  18. Shi H, Du C, Luo X (2007) Focal length modulation based on a metallic slit surrounded with grooves in curved depths. Appl Phys Lett 91:093111

    Article  Google Scholar 

  19. Lerman GM, Yanai A, Levy U (2009) Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized Light. Nano Letters 9:2139–2143

    Article  CAS  Google Scholar 

  20. Stockman MI (2004) Nanofocusing of optical energy in tapered plasmonic waveguides. Phys Rev Lett 93:137404

    Article  Google Scholar 

  21. Sun Z, Kim HK (2004) Refractive transmission of light and beam shaping with metallic nano-optic lenses. Appl Phys Lett 85:642–644

    Article  CAS  Google Scholar 

  22. Xie Y, Zakharian A, Moloney J, Mansuripur M (2004) Transmission of light through slit apertures in metallic films. Opt Express 12:6106–6121

    Article  Google Scholar 

  23. Lezec HJ, Degiron A, Devaux E, Linke RA, Martin-Moreno L, Garcia-Vidal FJ, Ebbesen TW (2002) Beaming light from a subwavelength aperture. Science 297:820–822

    Article  CAS  Google Scholar 

  24. Cui Y, Hu J, He S (2009) Nanocavity antenna array for enhancing extraordinary optical transmission of light through a metallic nanoslit. J Opt Soc Am B 26:2131–2135

    Article  CAS  Google Scholar 

  25. Tsutomu Ishi JF, Kikuo M, Toshio B, Keishi O (2005) Si nano-photodiode with a surface plasmon antenna. Japanese Journal of Applied Physics 44:L364–L366

    Article  Google Scholar 

  26. Seyoon K, Hwi K, Yongjun L, Byoungho L (2007) Off-axis directional beaming of optical field diffracted by a single subwavelength metal slit with asymmetric dielectric surface gratings. Appl Phys Lett 90:051113

    Article  Google Scholar 

  27. Xie Y, Zakharian A, Moloney J, Mansuripur M (2005) Transmission of light through a periodic array of slits in a thick metallic film. Opt Express 13:4485–4491

    Article  Google Scholar 

  28. Xu T, Wang C, Du C, Luo X (2008) Plasmonic beam deflector. Opt Express 16:4753–4759

    Article  Google Scholar 

  29. Jonas B, Thomas S, Sergey MN, Sergey IB, Eloise D, Thomas WE (2011) Field enhancement and extraordinary optical transmission by tapered periodic slits in gold films. New Journal of Physics 13:063029

    Article  Google Scholar 

  30. Sodergaard T, Bozhevolnyi SI, Beermann J, Novikov SM, Devaux E, Ebbesen TW (2012) Extraordinary optical transmission with tapered slits: effect of higher diffraction and slit resonance orders. J Opt Soc Am B 29:130–137

    Article  Google Scholar 

  31. Akiyama K, Takano K, Abe Y, Tokuda Y, Hangyo M (2010) Optical transmission anomalies in a double-layered metallic slit array. Opt Express 18:17876–17882

    Article  CAS  Google Scholar 

  32. Marani R, Marrocco V, Grande M, Morea G, D’Orazio A, Petruzzelli V (2011) Enhancement of extraordinary optical transmission in a double heterostructure plasmonic bandgap cavity. Plasmonics 6:469–476

    Article  CAS  Google Scholar 

  33. Srituravanich W, Fang N, Sun C, Luo Q, Zhang X (2004) Plasmonic nanolithography. Nano Letters 4:1085–1088

    Article  CAS  Google Scholar 

  34. Shao DB, Chen SC (2006) Direct patterning of three-dimensional periodic nanostructures by surface-plasmon-assisted nanolithography. Nano Letters 6:2279–2283

    Article  CAS  Google Scholar 

  35. Cui Y, Xu J, He S, Fang NX (2010) Plasmon-assisted optical curtains. Plasmonics 5:369–374

    Article  Google Scholar 

  36. Palik ED (1998) Handbook of optical constants of solids. Academic, New York

    Google Scholar 

  37. Coggon JH (1971) Electromagnetic and electrical modelling by the finite element method. Geophysics 36:132–155

    Article  Google Scholar 

  38. Moharam MG, Gaylord TK (1986) Rigorous coupled-wave analysis of metallic surface-relief gratings. J Opt Soc Am A 3:1780–1787

    Article  CAS  Google Scholar 

  39. Feng S, Darmawi S, Henning T, Klar PJ, Zhang X (2012) A miniaturized sensor consisting of concentric metallic nanorings on the end facet of an optical fiber. Small 8:1937–1944

    Article  CAS  Google Scholar 

  40. Cui Y, He S (2009) A theoretical re-examination of giant transmission of light through a metallic nano-slit surrounded with periodic grooves. Opt Express 17:13995

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is partially supported by the National Natural Science Foundation of China (11204205, 60976018, 61274056 and 60990320), the National Science Foundation (CMMI 0846771), Natural Foundation of Shanxi (2012011020-4), Special Foundation of Taiyuan University of Technology (2012L033), and the Starting Research Fund from Taiyuan University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanxia Cui or Yuying Hao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cui, Y., Xu, J., Lin, Y. et al. Optical Curtain Effect: Extraordinary Optical Transmission Enhanced by Antireflection. Plasmonics 8, 1087–1093 (2013). https://doi.org/10.1007/s11468-013-9513-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-013-9513-2

Keywords

ACS numbers

Navigation