Skip to main content
Log in

H-Shape Plasmonic Metasurface as Refractive Index Sensor

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In this report, using finite difference time domain simulation, a highly sensitive H-shape subwavelength plasmonic metasurface is demonstrated for refractive index sensor at near-infrared wavelengths. Numerical simulations show that optical transmission and reflection properties of such H-shape slit metamaterial depend significantly on the refractive index of the surrounding medium. The studies reveal that an index change of 0.5 results in a resonant frequency shift of nearly 600 nm, which is about 1200 nm shift per refractive index unit (RIU). The detection accuracy of ∼0.0035 RI for every 5 nm resonance frequency shift can be achieved. The frequency shift is explained on the basis of inductor capacitor (LC) model of the H-unit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Valsecchi C, Brolo AG (2013) Periodic metallic nanostructures as plasmonic chemical sensors. Langmuir 29:5638–5649

    Article  CAS  Google Scholar 

  2. Chen T, Li S, Sun H (2012) Metamaterials application in sensing. Sensors 12:2742–2765

    Article  Google Scholar 

  3. Chung T, Lee SY, Song EY, Chun H, Lee B (2011) Plasmonic nanostructures for nano-scale bio-sensing. Sensors 11:10907

    Article  CAS  Google Scholar 

  4. Mandal P, Ramakrishna SA (2011) Dependence of surface enhanced Raman scattering on the plasmonic template periodicity. Opt Lett 36:3705–3707

    Article  CAS  Google Scholar 

  5. Mandal P, Nandi A, Ramakrishna SA (2012) Propagating surface plasmon resonances in two-dimensional patterned gold-grating templates and surface enhanced Raman scattering. J Appl Phys 112:044314

    Article  Google Scholar 

  6. Mandal P, Gupta P, Nandi A, Ramakrishna SA (2012) Surface enhanced fluorescence and imaging with plasmon near-fields in gold corrugated gratings. J Nanophoton 6:063527

    Article  Google Scholar 

  7. Fort E, Grésillon S (2008) Surface enhanced fluorescence. J Phys D Appl Phys 41:013001

    Article  Google Scholar 

  8. Cui X, Tawa K, Hori H, Nishii N (2010) Tailored plasmonic gratings for enhanced fluorescence detection and microscopic imaging. Adv Funct Mater 20:546–553

    Article  CAS  Google Scholar 

  9. Lakowicz JR (2006) Plasmonics in biology and plasmon-controlled fluorescence. Plasmonics 1:5–33

    Article  CAS  Google Scholar 

  10. Fan M, Andrade GFS, Brolo AG (2011) A review on the fabrication of substrates for surface enhanced Raman spectroscopy and their applications in analytical chemistry. Anal Chim Acta 693:7–25

    Article  CAS  Google Scholar 

  11. Baker GA, Moore DS (2005) Progress in plasmonic engineering of surface-enhanced Raman-scattering substrates toward ultra-trace analysis. Anal Bioanal Chem 382:1751–1770

    Article  CAS  Google Scholar 

  12. Dougan JA, Faulds K (2012) Surface enhanced Raman scattering for multiplexed detection. Analyst 137:545–554

    Article  CAS  Google Scholar 

  13. Deng X, Braun GB, Liu S, Sciortino PF, Koefer JB, Tombler T, Moskovits M (2010) Single-order, subwavelength resonant nanograting as a uniformly hot substrate for surface-enhanced Raman spectroscopy. Nano Lett 10:1780–1786

    Article  CAS  Google Scholar 

  14. Alexander KD, Skinner K, Zhang S, Wei H, Lopez R (2010) Tunable SERS in gold nanorod dimers through strain control on an elastomeric substrate. Nano Lett 10:4488–4493

    Article  CAS  Google Scholar 

  15. Lim DK, Jeon KS, Hwang JH, Kim H, Kwon S, Suh YD, Nam JM (2011) Highly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap. Nat Nanotechnol 6:452–460

    Article  CAS  Google Scholar 

  16. Caldwell JD, Glembocki O, Bezares FJ, Bassim ND, Rendell RW, Feygelson M, Ukaegbu M, Kasica R, Shirey L, Hosten C (2011) Plasmonic nanopillar arrays for large-area, high-enhancement surface-enhanced Raman scattering sensors. ACS Nano 5:4046–4055

    Article  CAS  Google Scholar 

  17. Doherty MD, Murphy A, McPhillips J, Pollard RJ, Dawson P (2010) Wavelength dependence of Raman enhancement from gold nanorod arrays: quantitative experiment and modeling of a hot spot dominated system. J Phys Chem C 114:19913–19919

    Article  CAS  Google Scholar 

  18. Li K, Clime L, Cui B, Veres T (2008) Surface enhanced Raman scattering on long-range ordered noble-metal nanocrescent arrays. Nanotechnology 19:145305

    Article  Google Scholar 

  19. Martelli C, Canning J, Kristensen M, Groothoff N (2007) Refractive index measurement within a photonic crystal fibre based on short wavelength diffraction. Sensors 7:2492–2498

    Article  CAS  Google Scholar 

  20. Sun B, Chen MY, Zhang YK, Yang JC (2012) Design of refractive index sensors based on the wavelength-selective resonant coupling phenomenon in dual-core photonic crystal fibers. J Biomed Opt 17:037002

    Article  Google Scholar 

  21. Mileńko K, Hu DJJ, Shum PP, Zhang T, Lim JL, Wang Y, Woliński TR, Wei H, Tong W (2012) Photonic crystal fiber tip interferometer for refractive index sensing. Opt Lett 37:1373–1375

    Article  Google Scholar 

  22. Shen Y, Zhou J, Tao T, Jiang R, Liu M, Xiao G, Zhu J, Zhou ZK, Wang X, Jin C, Wang J (2013) Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit. Nat Commun 4:2381

    Google Scholar 

  23. Briscoe JL, Cho SY (2011) A periodically coupled plasmon nanostructure for refractive index sensing. Opt Express 19:8815–8820

    Article  Google Scholar 

  24. Yong Z, Lei DY, Lam CH, Wang Y (2014) Ultrahigh refractive index sensing performance of plasmonic quadrupole resonances in gold nanoparticles. Nanoscale Res Lett 9:187

    Article  Google Scholar 

  25. McFarland AD, Van Duyne RP (2003) Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity. Nano Lett 3:1057–1062

    Article  CAS  Google Scholar 

  26. Sun Y, Xia Y (2002) Increased sensitivity of surface plasmon resonance of gold nanoshells compared to that of gold solid colloids in response to environmental changes. Anal Chem 74:5297–5305

    Article  CAS  Google Scholar 

  27. Lee KS, El-Sayed MA (2006) Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition. J Phys Chem B 110:19220–19225

    Article  CAS  Google Scholar 

  28. Cetin AE, Yanik AA, Yilmaz C, Somu S, Busnaina A, Altug H (2011) Monopole antenna arrays for optical trapping, spectroscopy, and sensing. Appl Phys Lett 98:111110

    Article  Google Scholar 

  29. Liu N, Weiss T, Mesch M, Langguth L, Eigenthaler U, Hirscher M, Sonnichsen C, Giessen H (2010) Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing. Nano Lett 10:1103–1107

    Article  CAS  Google Scholar 

  30. Kabashin AV, Evans P, Pastkovsky S, Hendren W, Wurtz GA, Atkinson R, Pollard R, Podolskiy VA, Zayats AV (2009) Plasmonic nanorod metamaterials for biosensing. Nat Mater 8:867–871

    Article  CAS  Google Scholar 

  31. Larsson EM, Alegret J, Kall M, Sutherland DS (2007) Sensing characteristics of NIR localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors. Nano Lett 5:1256–1263

    Article  Google Scholar 

  32. Bukasov R, Ali TA, Nordlander P, Shumaker-Parry JS (2010) Probing the plasmonic near-field of gold nanocrescent antennas. ACS Nano 4:6639–6650

    Article  CAS  Google Scholar 

  33. Galush WJ, Shelby SA, Mulvihill MJ, Tao A, Yang P, Groves JT (2009) A nanocube plasmonic sensor for molecular binding on membrane surfaces. Nano Lett 9:2077–2082

    Article  CAS  Google Scholar 

  34. Maria J, Truong TT, Yao J, Lee TW, Nuzzo RG, Leyffer S, Gray SK, Rogers JA (2009) Optimization of 3D plasmonic crystal structures for refractive index sensing. J Phys Chem C 113:10493–10499

    Article  CAS  Google Scholar 

  35. Nehl CL, Liao H, Hafner JH (2006) Optical properties of star-shaped gold nanoparticles. Nano Lett 6:683–688

    Article  CAS  Google Scholar 

  36. Chen H, Kou X, Yang Z, Ni W, Wang J (2008) Shape- and size-dependent refractive index sensitivity of gold nanoparticles. Langmuir 24:5233–5237

    Article  CAS  Google Scholar 

  37. Zhan Y, Lei DY, Li X, Maier SA (2014) Plasmonic Fano resonances in nanohole quadrumers for ultra-sensitive refractive index sensing. Nanoscale 7:4705–4715

    Article  Google Scholar 

  38. Liang W, Huang Y, Xu Y, Lee RK, Yariv A (2005) Highly sensitive fiber Bragg grating refractive index sensors. Appl Phys Lett 86:151122

    Article  Google Scholar 

  39. Shi X, Zheng S, Chi H, Jin X, Zhang X (2012) Refractive index sensor based on tilted fiber Bragg grating and stimulated Brillouin scattering. Opt Express 20:10853–10858

    Article  Google Scholar 

  40. Ren M, Pan C, Li Q, Cai W, Zhang X, Wu Q, Fan S, Xu J (2013) Isotropic spiral plasmonic metamaterial for sensing large refractive index change. Opt Lett 38:3133–3136

    Article  Google Scholar 

  41. Gu Y, Li Q, Xiao J, Wu K, Wang GP (2011) Plasmonic metamaterials for ultrasensitive refractive index sensing at near infrared. J Appl Phys 109:023104

    Article  Google Scholar 

  42. Ellenbogen T, Seo K, Crozier KB (2012) Chromatic plasmonic polarizers for active visible color filtering and polarimetry. Nano Lett 12:1026–1031

    Article  CAS  Google Scholar 

  43. Hou B, Liao XQ, Poon JKS (2010) Resonant infrared transmission and effective medium response of subwavelength H-fractal apertures. Opt Express 18:3946–3951

    Article  Google Scholar 

  44. Liu Z, Li H, Xu H, Cao G, Xu X, Yang H (2012) Adjustable plasmon resonances through an H-shaped metallic grating. Opt Commun 285:3781–3786

    Article  CAS  Google Scholar 

  45. Li G, Chen X, Ni B, Li O, Huang L, Jiang Y, Hu W, Lu W (2013) Fractal H-shaped plasmonic nanocavity. Nanotechnology 24:205702

    Article  Google Scholar 

  46. Sun M, Liu RJ, Li ZY, Cheng BY, Zhang DZ, Yang H, Jin A (2007) Enhanced near-infrared transmission through periodic H-shaped arrays. Phys Lett A 365:510–513

    Article  CAS  Google Scholar 

  47. Mandal P, Ramakrishna SA, Patil R, Gopal AV (2013) Polarization dependent color switching by extra-ordinary transmission in H-slit plasmonic metasurface. J Appl Phys 114:224303

    Article  Google Scholar 

  48. Yuan B, Zhou W, Wang J (2014) Novel H-shaped plasmon nanoresonators for efficient dual-band SERS and optical sensing applications. J Opt 16:105013

    Article  Google Scholar 

  49. Xu X, Peng B, Li D, Zhang J, Wong LM, Zhang Q, Wang S, Xiong Q (2011) Flexible visible–infrared metamaterials and their applications in highly sensitive chemical and biological sensing. Nano Lett 11:3232–3238

    Article  CAS  Google Scholar 

  50. Piatek Z, Baron B, Szczegielniak T, Kusiak D, Pasierbek A (2012) Self inductance of long conductor of rectangular cross section. PRZEGLĄD ELEKTROTECHNICZNY (Electr Rev) R 88:323–326

    Google Scholar 

  51. Okamoto T, Otsuka T, Sato S, Fukuta T, Haraguchi M (2012) Dependence of LC resonance wavelength on size of silver split-ring resonator fabricated by nanosphere lithography. Opt Express 20:24059–24067

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author acknowledges Prof. S. A. Ramakrishna, Department of Physics, IIT Kanpur, for the useful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Mandal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandal, P. H-Shape Plasmonic Metasurface as Refractive Index Sensor. Plasmonics 10, 439–445 (2015). https://doi.org/10.1007/s11468-014-9825-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-014-9825-x

Keywords

Navigation