Skip to main content
Log in

Spectral Splitting Based on Electromagnetically Induced Transparency in Plasmonic Waveguide Resonator System

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Spectral splitting is numerically investigated based on the electromagnetically induced transparency (EIT) in a nanoscale plasmonic waveguide resonator system, which consists of a square ring resonator coupled with a stub-shaped metal-insulator-metal (MIM) waveguide. Simulation results show that the transparency window can be easily tuned by changing the geometrical parameters of the structure and the material filled in the resonators. By adding another stub or (and) square ring resonator, multi-EIT-like peaks appear in the broadband transmission spectrum, and the physical mechanism is presented. Our compact plasmonic structure may have potential applications for nanoscale optical switching, nanosensor, nanolaser, and slow-light devices in highly integrated optical circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424(6950):824–830

    Article  CAS  Google Scholar 

  2. Lu H, Liu XM, Wang LR, Gong YK, Mao D (2011) Ultrafast all-optical switching in nanoplasmonic waveguide with Kerr nonlinear resonator. Opt Express 19(4):2910–2915

    Article  CAS  Google Scholar 

  3. Xiao SS, Liu L, Qiu M (2006) Resonator channel drop filters in a plasmon-polaritons metal. Opt Express 14(7):2932–2937

    Article  Google Scholar 

  4. Chen JJ, Li Z, Yue S, Xiao JH, Gong QH (2012) Plasmon-induced transparency in asymmetric T-shape single slit. Nano Lett 12(5):2494–2498

    Article  CAS  Google Scholar 

  5. Lu H, Liu XM, Mao D, Wang GX (2012) Plasmonic nanosensor based on Fano resonance in waveguide-coupled resonators. Opt Lett 37(18):3780–3782

    Article  Google Scholar 

  6. Xu T, Wu YK, Luo XG, Guo LJ (2010) Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging. Nature Commun 1:59

    Google Scholar 

  7. Veronis G, Fan SH (2005) Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides. Appl Phys Lett 87:131102

    Article  Google Scholar 

  8. Economou EN (1969) Surface plasmons in thin films. Phys Rev 182:539

    Article  Google Scholar 

  9. Lin XS, Huang XG (2008) Tooth-shaped plasmonic waveguide filters with nanometeric sizes. Opt Lett 33(23):2874–2876

    Article  Google Scholar 

  10. Hosseini A, Massoud Y (2007) Nanoscale surface plasmon based resonator using rectangular geometry. Appl Phys Lett 90:181102

    Article  Google Scholar 

  11. Zhang Q, Huang XG, Lin XS, Tao J, Jin XP (2009) A subwavelength coupler-type MIM optical filter. Opt Express 17(9):7549–7554

    Article  CAS  Google Scholar 

  12. Tao J, Huang XG, Lin XS, Zhang Q, Jin XP (2009) A narrow-band subwavelength plasmonic waveguide filter with asymmetrical multiple teeth-shaped structure. Opt Express 17(16):13989–13994

    Article  CAS  Google Scholar 

  13. Chen JJ, Li Z, Lei M, Fu XL, Xiao JH, Gong QH (2012) Plasmonic Y-splitters of high wavelength resolution based on strongly coupled-resonator effects. Plasmonics 7(3):441–445

    Article  CAS  Google Scholar 

  14. Guo YH, Yan LS, Pan W, Luo B, Wen KH, Guo Z, Li HY, Luo XG (2011) A plasmonic splitter based on slot cavity. Opt Express 19(15):13831–13838

    Article  Google Scholar 

  15. Chen JJ, Li Z, Zou YJ, Deng ZL, Xiao JH, Gong QH (2013) Coupled-resonator-induced fano resonances for plasmonic sensing with ultra-high figure of merits. Plasmonics 8:1627–1632

    Article  CAS  Google Scholar 

  16. Zhou ZP, Hu FF, Yi HX (2011) Wavelength demultiplexing structure based on arrayed plasmonic slot cavities. Opt Lett 36(8):1500–1502

    Article  Google Scholar 

  17. Wang GX, Lu H, Liu XM, Mao D, Duan LN (2011) Tunable multi-channel wavelength demultiplexer based on MIM plasmonic nanodisk resonators at telecommunication regime. Opt Express 19(4):3513–3518

    Article  CAS  Google Scholar 

  18. Noual A, Akjouj A, Pennec Y, Gillet J, Djafari-Rouhani B (2009) Modeling of two-dimensional nanoscale Y-bent plasmonic waveguides with cavities for demultiplexing of the telecommunication wavelengths. New J Phys 11(10):103020

    Article  Google Scholar 

  19. Lu H, Liu XM, Gong YK, Mao D, Wang LR (2011) Enhancement of transmission efficiency of nanoplasmonic wavelength demultiplexer based on channel drop filters and reflection nanocavities. Opt Express 19(14):12885–12890

    Article  Google Scholar 

  20. Boller KJ, Imamoglu A, Harris SE (1991) Observation of electromagnetically induced transparency. Phys Rev Lett 66(20):2593

    Article  CAS  Google Scholar 

  21. Fleischhauer M, Imamoglu A, Marangos JP (2005) Electromagnetically induced transparency: optics in coherent media. Rev Mod Phys 77:633–673

    Article  CAS  Google Scholar 

  22. Xu Q, Sandhu S, Povinelli ML, Shakya J, Fan S, Lipson M (2006) Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency. Phys Rev Lett 96:123901

    Article  Google Scholar 

  23. Naweed A, Farca G, Shopova SI, Rosenberger AT (2005) Induced transparency and absorption in coupled whispering-gallery microresonators. Phys Rev A 71:043804

    Article  Google Scholar 

  24. Liu HC, Amnon Y (2009) Grating induced transparency (GIT) and the dark mode in optical waveguides. Opt Express 17(14):11710–11718

    Article  CAS  Google Scholar 

  25. Yang X, Yu M, Kwong DL, Wong CW (2009) All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities. Phys Rev Lett 102:173902

    Article  Google Scholar 

  26. Zhou JH, Mu D, Yang JH, Han WB, Di X (2011) Coupled-resonator-induced transparency in photonic crystal waveguide resonator systems. Opt Express 19(5):4856–4861

    Article  CAS  Google Scholar 

  27. Kekatpure RD, Barnard ES, Cai WS, Brongersma ML (2010) Phase-coupled plasmon-induced transparency. Phys Rev Lett 104:243902

    Article  Google Scholar 

  28. Lu H, Liu X, Mao D, Gong Y, Wang G (2011) Induced transparency in nanoscale plasmonic resonator systems. Opt Lett 36(16):3233–3235

    Article  Google Scholar 

  29. Chen JJ, Wang C, Zhang R, Xiao JH (2013) Multiple plasmon-induced transparencies in coupled-resonator systems. Opt Lett 37(24):5133–5135

    Article  Google Scholar 

  30. Lu H, Liu XM, Wang GX, Mao D (2012) Tunable high-channel-count bandpass plasmonic filters based on an analogue of electromagnetically induced transparency. Nanotech 23:444003

    Article  Google Scholar 

  31. Liu N, Langguth L, Weiss T, Kastel J, Fleisch M, Pfau T, Giedden H (2009) Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit. Nat Mater 8:758–762

    Article  CAS  Google Scholar 

  32. Han Z, Forsberg E, He S (2007) Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides. IEEE Photon Technol Lett 19:91–93

    Article  Google Scholar 

  33. Matsuzaki Y, Okamoto T, Haraguchi M, Fukui M, Nakagaki M (2008) Characteristics of gap plasmon waveguide with stub structures. Express 16(21):16314–16325

    Article  Google Scholar 

  34. Nordlander P, Oubre C, Prodan E, Li K, Stockman MI (2004) Plasmon hybridization in nanoparticle dimers. Nano Lett 4(5):899–903

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China under Grant No. 11374041, National Basic Research Program of China under Grant No. 2010CB923202 and Fund of State Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications), People’s Republic of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Wang, W., Cui, L. et al. Spectral Splitting Based on Electromagnetically Induced Transparency in Plasmonic Waveguide Resonator System. Plasmonics 10, 721–727 (2015). https://doi.org/10.1007/s11468-014-9858-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-014-9858-1

Keywords

Navigation