Skip to main content
Log in

Enhancement of Dynamic Sensitivity of Multiple Surface-plasmonic-polaritonic Sensor Using Silver Nanoparticles

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Multiple surface plasmon-polariton (SPP) waves excited at the interface of a homogeneous isotropic metal and a chiral sculptured thin film (STF) impregnated with silver nanoparticles were theoretically assessed for the multiple-SPP-waves-based sensing of a fluid uniformly infiltrating the chiral STF. The Bruggemann homogenization formalism was used in two different modalities to determine the three principal relative permittivity scalars of the silver-nanoparticle-impregnated chiral STF infiltrated uniformly by the fluid. The dynamic sensitivity increased when silver nanoparticles were present, provided their volume fraction did not exceed about 1 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Homola J (2003) Present and future of surface plasmon resonance biosensors. Anal Bioanal Chem 377:528–539

    Article  CAS  Google Scholar 

  2. Abdulhalim I, Zourob M, Lakhtakia A (2008) Surface plasmon resonance for biosensing: A mini-review. Electromagnetics 28:214–242

    Article  Google Scholar 

  3. Couture C, Zhao SS, Masson J-F (2013) Modern surface plasmon resonance for bioanalytics and biophysics. Phys Chem Chem Phys 15:11190–11216

    Article  CAS  Google Scholar 

  4. Maier SA (2007) Plasmonics: fundamentals and applications. Springer, New York

    Google Scholar 

  5. Luong JHT, Male KB, Glennon JD (2008) Biosensor technology: Technology push versus market pull. Biotechnol Adv 26:492–500

    Article  CAS  Google Scholar 

  6. Hutter E, Cha S, Liu J-F, Park J, Yi J, Fendler JH, Roy D (2001) Role of substrate metal in gold nanoparticle enhanced surface plasmon resonance. J Phys Chem 105:8–12

    Article  CAS  Google Scholar 

  7. Hao P, Wu Y, Li F (2011) Improved sensitivity of wavelength-modulated surface plasmon resonance biosensor using gold nanorods. Appl Opt 50:5555–5558

    Article  CAS  Google Scholar 

  8. Bedford EE, Spadavecchia J, Pradier C-M, Gu FX (2012) Surface plasmon resonance biosensors incorporating gold nanoparticles. Macromol Biosci 12:724–739

    Article  CAS  Google Scholar 

  9. Bohren CF, Huffman DR (1983) Absorption and scattering of light by small particles. Wiley, New York

    Google Scholar 

  10. Kalele SA, Tiwari NR, Gosavi SW, Kulkarni SK (2007) Plasmon-assisted photonics at the nanoscale. J Nanophoton 1:012501

    Article  Google Scholar 

  11. Lee K-S, El-Sayed MA (2006) Gold and silver nanoparticles in sensing and imaging: Sensitivity of plasmon response to size, shape, and metal composition. J Phys Chem 110:19220–19225

    Article  CAS  Google Scholar 

  12. Li A, Isaacs S, Abdulhalim I, Li S (2015) Ultrahigh enhancement of electromagnetic fields by exciting localized with extended surface plasmons. J Phys Chem C 119:19382–19389

    Article  CAS  Google Scholar 

  13. Saha K, Agasti SS, Kim C, Li X, Rotello VM (2012) Gold nanoparticles in chemical and biological sensing. Chem Rev 112:2739–2779

    Article  CAS  Google Scholar 

  14. Swiontek SE, Pulsifer DP, Lakhtakia A (2013) Optical sensing of analytes in aqueous solutions with a multiple surface-plasmon-polariton-wave platform. Sci Rep 3:1409

    Article  Google Scholar 

  15. Polo JA Jr, Mackay TG, Lakhtakia A (2013) Electromagnetic surface waves: a modern perspective. Elsevier, Waltham

    Google Scholar 

  16. Mackay TG, Lakhtakia A (2012) Modeling chiral sculptured thin films as platforms for surface-plasmonic-polaritonic optical sensing. IEEE Sens J 12:273–280

    Article  Google Scholar 

  17. Abbas F, Naqvi QA, Faryad M (2015) Multiplasmonic optical sensor using sculptured nematic thin films. Plasmonics. doi:10.1007/s11468-015-9920-7

  18. Lakhtakia A, Messier R (2005) Sculptured thin films: Nanoengineered morphology and optics. SPIE Press, Bellingham

    Book  Google Scholar 

  19. Lakhtakia A (2007) Toward optical sensing of metal nanoparticles using chiral sculptured thin films. J Nanophoton 1:019–502

    Google Scholar 

  20. Hodgkinson I, Wu Qh, Hazel J (1998) Empirical equations for the principal refractive indices and column angle of obliquely deposited films of tantalum oxide, titanium oxide, and zirconium oxide. Appl Opt 37:2653–2659

    Article  CAS  Google Scholar 

  21. Mackay TG (2007) On the effective permittivity of silver-insulator nanocomposites. J. Nanophoton 1:019–501

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Faryad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbas, F., Faryad, M., Swiontek, S.E. et al. Enhancement of Dynamic Sensitivity of Multiple Surface-plasmonic-polaritonic Sensor Using Silver Nanoparticles. Plasmonics 11, 987–994 (2016). https://doi.org/10.1007/s11468-015-0133-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-015-0133-x

Keywords

Navigation