Skip to main content
Log in

Electrically Tunable Fiber Optic Sensor Based on Surface Plasmon Resonance

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

The response of optical fiber surface plasmon resonance (SPR) sensor to potential is monitored in real time. The potential-induced reflectance of a gold-coated optical fiber SPR probe is dependent on potential step width and ionic strength. Wider potential step and stronger ionic strength are generally able to enhance the reflectance and accelerate the response time. The specifically adsorptive anion Cl provides a pronounced effect on a potential-dependent SPR probe. The exclusive contact of the SPR probe with anion Cl could significantly slow down the optical response. The work offers opportunities for optical fiber SPR probes to characterize the electrochemical application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Law WC, Yong KT, Baev A, Hu R, Prasad PN (2009) Nanoparticle enhanced surface plasmon resonance biosensing: application of gold nanorods. Opt Express 17:19041–19046

    Article  CAS  Google Scholar 

  2. Zeng S, Hu S, Xia J, Andseson T, Dinh XQ, Meng XM, Coquet P, Yong KT Y (2015) Graphene–MoS2 hybrid nanostructures enhanced surface plasmon resonance biosensors. Sensor Actuators B 207:801–810

    Article  CAS  Google Scholar 

  3. Lin WB, Jaffrezic-Renault N, Gagnaire A, Gagnaire H (2000) The effects of polarization of the incident light-modeling and analysis of a SPR multimode optical fiber sensor. Sensor Actuators A 84:198–204

    Article  CAS  Google Scholar 

  4. Zeng S, Yu X, Law WC, Zhang Y, Hu R, Dinh XQ, Ho HP, Yong KT (2013) Size dependence of Au NP-enhanced surface plasmon resonance based on differential phase measurement. Sensor Actuators A 176:1128–1133

    Article  CAS  Google Scholar 

  5. Zeng S, Baillargeat D, Ho HP, Yong KT (2014) Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications. Chem Soc Rev 43:3426–3452

    Article  CAS  Google Scholar 

  6. Dondapati SK, Ludemann M, Muller R, Schwieger S, Schwemer A, Handel B, Kwiatkowski D, Djiango M, Runge E, Klar T (2012) Voltage-induced adsorbate damping of single gold nanorod plasmons in aqueous solution. Nano Lett 12:1247–1252

    Article  CAS  Google Scholar 

  7. Qu X, Peng Z, Jiang X, Dong S (2004) Surface charge influence on the surface plasmon absorbance of electroactive thiol-protected gold nanoparticles. Langmuir 20:2519–2522

    Article  CAS  Google Scholar 

  8. Sannomiya T, Dermutz H, Hafner C, Vörös J, Dahlin AB (2009) Electrochemistry on a localized surface plasmon resonance sensor. Langmuir 26:7619–7626

    Article  Google Scholar 

  9. Daniels JK, Chumanov G (2005) Spectroelectrochemical studies of plasmon coupled silver nanoparticles. J Electroanal Chem 575:203–209

    Article  CAS  Google Scholar 

  10. Toyota A, Sagara T (2006) Time dependent spectral change upon potential step perturbation for Au nanoparticles immobilized on an organic monolayer-modified ITO electrode. Colloids Surf, A 286:62–69

    Article  CAS  Google Scholar 

  11. Wang TJ, Ho PC (2011) Localized surface plasmon resonance biosensing by electro-optic modulation with sensitivity and resolution tunability. J Appl Phys 109:064703

    Article  Google Scholar 

  12. Schlereth DD (1999) Characterization of protein monolayers by surface plasmon resonance combined with cyclic voltammetry ‘in situ’. J Electroanal Chem 464:198–207

    Article  CAS  Google Scholar 

  13. Andersson O, Ulrich C, Björefors F, Liedberg B (2008) Imaging SPR for detection of local electrochemical processes on patterned surfaces. Sens Actuators, B 134:545–550

    Article  CAS  Google Scholar 

  14. Iwasaki Y, Horiuchi T, Niwa O (2001) Detection of electrochemical enzymatic reactions by surface plasmon resonance measurement. Anal Chem 73:1595–1598

    Article  CAS  Google Scholar 

  15. Koide S, Iwasaki Y, Horiuchi T, Niwa O, Tamiya E, Yokoyama K (2000) A novel biosensor using electrochemical surface plasmon resonance measurements. Chem Commun 9:741–742

    Article  Google Scholar 

  16. Salamifar SE, Lai RY (2014) Application of electrochemical surface plasmon resonance spectroscopy for characterization of electrochemical DNA sensors. Colloids Surf, B 122:835–839

    Article  CAS  Google Scholar 

  17. Zhang J, Li R, Jiang FL, Zhou B, Luo QY, Han XL, Lin Y, He H, Liu Y, Wang YL (2014) An electrochemical and surface plasmon resonance study of adsorption actions of DNA by Escherichia coli. Colloids Surf, B 117:68–74

    Article  CAS  Google Scholar 

  18. Shevchenko Y, Camci-Unal G, Cuttica DF, Dokmeci MR, Albert J, Khademhosseini A (2014) Surface plasmon resonance fiber sensor for real-time and label-free monitoring of cellular behavior. Biosens Bioelectron 56:359–367

    Article  CAS  Google Scholar 

  19. Zhang J, Atay T, Nurmikko AV (2009) Optical detection of brain cell activity using plasmonic gold nanoparticles. Nano Lett 9:519–524

    Article  CAS  Google Scholar 

  20. Ae Kim S, Min Byun K, Lee J, Hoon Kim J, Albert Kim DG, Baac H, Shuler ML, June Kim S (2008) Optical measurement of neural activity using surface plasmon resonance. Opt Lett 33:914–916

    Article  Google Scholar 

  21. Novo C, Funston AM, Mulvaney P (2008) Direct observation of chemical reactions on single gold nanocrystals using surface plasmon spectroscopy. Nat Nanotechnol 3:598–602

    Article  CAS  Google Scholar 

  22. Novo C, Funston AM, Gooding AK, Mulvaney P (2009) Electrochemical charging of single gold nanorods. J Am Chem Soc 131:14664–14666

    Article  CAS  Google Scholar 

  23. Iga M, Seki A, Watanabe K (2005) Gold thickness dependence of SPR-based hetero-core structured optical fiber sensor. Sens Actuators, B 106:363–368

    Article  CAS  Google Scholar 

  24. Huang Y, Xie W, Tang D, Du C (2013) Theoretical analysis of voltage-dependent fiber optic surface plasmon resonance sensor. Opt Commun 308:109–114

    Article  CAS  Google Scholar 

  25. Huang Y, Pitter MC, Somekh MG (2011) Morphology-dependent voltage sensitivity of a gold nanostructure. Langmuir 27:13950–13961

    Article  CAS  Google Scholar 

  26. Huang Y, Xia L, Yang Z, Liu Y, Xie W, Zhang H (2013) Electrochemical tuned scattering of gold nanostructure. Appl Surf Sci 265:802–809

    Article  CAS  Google Scholar 

  27. Huang Y, Xia L, Wei W, Chuang CJ, Du C (2014) Theoretical investigation of voltage sensitivity enhancement for surface plasmon resonance based optical fiber sensor with a bimetallic layer. Opt Commun 333:146–150

    Article  CAS  Google Scholar 

  28. Huang Y, Wu D, Chuang CJ, Nie B, Cui H, Yun W (2015) Theoretical analysis of tapered fiber optic surface plasmon resonance sensor for voltage sensitivity. Opt Fiber Technol 22:42–45

    Article  Google Scholar 

  29. Toyota A, Sagara T (2008) Particle size dependence of the charging of Au nanoparticles immobilized on a modified ITO electrode. Electrochim Acta 53:2553–2559

    Article  CAS  Google Scholar 

  30. Toyota A, Nakashima N, Sagara T (2004) UV–visible transmission–absorption spectral study of Au nanoparticles on a modified ITO electrode at constant potentials and under potential modulation. J Electroanal Chem 565:335–342

    Article  CAS  Google Scholar 

  31. Huang Y, Pitter MC, Somekh MG (2012) Time-dependent scattering of ultrathin gold film under potential perturbation. ACS Appl Mater Inter 4:3829–3836

    Article  CAS  Google Scholar 

  32. Nishi N, Hirano Y, Motokawa T, Kakiuchi T (2013) Ultraslow relaxation of the structure at the ionic liquid/gold electrode interface to a potential step probed by electrochemical surface plasmon resonance measurements: asymmetry of the relaxation time to the potential-step direction. Phys Chem Chem Phys 15:11615–11619

    Article  CAS  Google Scholar 

  33. Atkin R, El Abedin SZ, Hayes R, Gasparotto LHS, Borisenko N, Endres F (2009) AFM and STM studies on the surface interaction of [BMP]TFSA and [EMIm]TFSA ionic liquids with Au(111). J Phys Chem C 113:13266–13272

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support of the National Natural Science Foundation of China (Grant No. 61307103), Action Plan for Western Development of Chinese Academy of Sciences (Grant No. KZCX2-XB3-14), STS Project of Chinese Academy of Sciences (Grant No. KFJ-EW-STS-011), Youth Innovation Promotion Association of Chinese Academy of Sciences (Membership Certification No. 2016342), the Scientific Research Foundation for the Returned Overseas Chinese Scholars, Ministry of Education, Visiting Scholar Foundation of Key Laboratory of Optoelectronic Technology & Systems (Chongqing University), Ministry of Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Huang.

Additional information

Yufeng Sun and Haiyan Cao contributed equally to this work.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1: Fig.S1

Reflectance modulated by potential step (a,c,e) 0 mV → -100 mV, (b,d,f) 0 mV → 100 mV with a 18 s duration. The fiber optic SPR sensor was immersed in (a,b) 0.3 mol/L, (c,d) 0.5 mol/L and (e,f) 1 mol/L NaCl solution. (JPG 1648 kb)

ESM 2: Fig.S2

Reflectance modulated by potential step (a,c,e) 0 mV → -200 mV, (b,d,f) 0 mV → 200 mV with a 18 s duration. The fiber optic SPR sensor was immersed in (a,b) 0.3 mol/L, (c,d) 0.5 mol/L and (e,f) 1 mol/L NaCl solution. (JPG 1539 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Cao, H., Yuan, Y. et al. Electrically Tunable Fiber Optic Sensor Based on Surface Plasmon Resonance. Plasmonics 11, 1437–1444 (2016). https://doi.org/10.1007/s11468-016-0194-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-016-0194-5

Keywords

Navigation