Skip to main content
Log in

Linear and Nonlinear Absorption Properties of Diamond-Like Carbon Doped With Cu Nanoparticles

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Ultrafast relaxation processes in diamond-like carbon (DLC) thin films with embedded Cu nanoparticles (DLC:Cu nanocomposites) were investigated by means of transient absorption spectroscopy focusing on localized surface plasmon resonance (LSPR) of photoexcited Cu nanoparticles. Absorption spectra of the composite films correspond to the sum of absorption spectra of DLC matrix and Cu nanoparticles; however, Cu nanoparticles strongly dominate in the transient differential absorption. Excitations of DLC matrix and of Cu nanoparticles relax independently revealing no strong interaction. High sensitivity measurements enabled to obtain the hot electron relaxation dynamics in Cu nanoparticles in the low excitation intensity conditions. The relaxation time was found to be independent of the excitation intensity up to tens of microjoule per square centimeter per pulse and to increase at higher intensities. The relaxation time obtained at low excitation intensity was also found to increase by about 30 % in the samples with high Cu concentration, where larger nanoparticles were formed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Santra TS, Bhattacharyya TK, Patel P, et al. (2012). Diamond, diamond-like carbon (DLC) and diamond-like nanocomposite (DLN) thin films for MEMS applications. In: Nazmul Islam (ed) Microelectromechanical Syst. Devices. InTech, p 459.

  2. Robertson J (2002) Diamond-like amorphous carbon. Mater Sci Eng R Reports 37:129–281. doi:10.1016/S0927-796X(02)00005-0

    Article  Google Scholar 

  3. Robertson J (2008) Comparison of diamond-like carbon to diamond for applications. Phys Status Solidi Appl Mater Sci 205:2233–2244. doi:10.1002/pssa.200879720

    Article  CAS  Google Scholar 

  4. Meškinis Š, Kopustinskas V, Šlapikas K, Tamulevičius S, Guobienė A, Gudaitis R, Gudaitis GVR (2006) Ion beam synthesis of the diamond like carbon films for nanoimprint lithography applications. Thin Solid Films 515:636–639. doi:10.1016/j.tsf.2005.12.223

    Article  Google Scholar 

  5. Schall JD, Gao G, Harrison JA (2010) Effects of adhesion and transfer film formation on the tribology of self-mated DLC contacts. J Phys Chem C 114:5321–5330. doi:10.1021/jp904871t

    Article  CAS  Google Scholar 

  6. Hayashi K, Tezuka K, Ozawa N et al (2011) Tribochemical reaction dynamics simulation of hydrogen on a diamond-like carbon surface based on tight-binding quantum chemical molecular dynamics. J Phys Chem C 115:22981–22986. doi:10.1021/jp207065n

    Article  CAS  Google Scholar 

  7. Ferrari AC, Robertson J (2004) Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond. Philos Trans A Math Phys Eng Sci 362:2477–2512. doi:10.1098/rsta.2004.1452

    Article  CAS  Google Scholar 

  8. Bai S, Onodera T, Nagumo R (2012) Friction reduction mechanism of hydrogen- and fluorine-terminated diamond-like carbon films investigated by molecular dynamics and quantum chemical calculation. J Phys Chem C 116:12559–12565. doi:10.1021/jp300937n

    Article  CAS  Google Scholar 

  9. Tamulevicius T, Gražulevičiūtė I, Urbonas D et al (2014) Numerical and experimental analysis of optical response of sub-wavelength period structure in carbonaceous film for refractive index sensing. Opt Express 22:27462–27475. doi:10.1364/OE.22.027462

    Article  CAS  Google Scholar 

  10. Tamulevičius T, Tamulevičienė A, Virganavičius D et al (2014) Structuring of DLC:Ag nanocomposite thin films employing plasma chemical etching and ion sputtering. Nucl Instruments Methods Phys Res Sect B Beam Interact with Mater Atoms 341:1–6. doi:10.1016/j.nimb.2013.09.052

    Article  Google Scholar 

  11. Meškinis Š, Vasiliauskas A, Šlapikas K et al (2013) Structure of the silver containing diamond like carbon films: study by multiwavelength Raman spectroscopy and XRD. Diam Relat Mater 40:32–37. doi:10.1016/j.diamond.2013.09.004

    Article  Google Scholar 

  12. Kopustinskas V, Meškinis Š, Grigaliunas V et al (2002) Ion beam synthesis of α-CNx:H films. Surf Coatings Technol 151–152:180–183. doi:10.1016/S0257-8972(01)01573-0

    Article  Google Scholar 

  13. You G-J, Zhou P, Zhang C-F et al (2005) Ultrafast studies on the energy relaxation dynamics and the concentration dependence in Ag:Bi2O3 nanocomposite films. Chem Phys Lett 413:162–167. doi:10.1016/j.cplett.2005.07.076

    Article  CAS  Google Scholar 

  14. Darugar Q, Qian W, El-sayed MA et al (2006) Size-dependent ultrafast electronic energy relaxation and enhanced fluorescence of copper nanoparticles. J Phys Chem B 110:143–149

    Article  CAS  Google Scholar 

  15. Huang W, Qian W, El-sayed MA et al (2007) Effect of the lattice crystallinity on the electron-phonon relaxation rates in gold nanoparticles. J Phys Chem C 111:10751–10757

    Article  CAS  Google Scholar 

  16. Jain PK, Qian W, El-Sayed MA (2006) Ultrafast electron relaxation dynamics in coupled metal nanoparticles in aggregates. J Phys Chem B 110:136–42. doi:10.1021/jp055562p

    Article  CAS  Google Scholar 

  17. Osgood R, Cao L, Panoiu N et al (2009) Nonlinear plasmonics. Nat Photonics 6:737–748. doi:10.1038/nphoton.2012.244

    Google Scholar 

  18. Mubeen S, Hernandez-Sosa G, Moses D et al (2011) Plasmonic photosensitization of a wide band gap semiconductor: converting plasmons to charge carriers. Nano Lett 11:5548–5552. doi:10.1021/nl203457v

    Article  CAS  Google Scholar 

  19. Choi H, Chen WT, Kamat PV (2012) Know thy nano neighbor. Plasmonic versus electron charging effects of metal nanoparticles in dye-sensitized solar cells. ACS Nano 6:4418–4427. doi:10.1021/nn301137r

    Article  CAS  Google Scholar 

  20. Clavero C (2014) Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices. Nat Photonics 8:95–103. doi:10.1038/nphoton.2013.238

    Article  CAS  Google Scholar 

  21. Wu J-L, Chen F-C, Hsiao Y-S et al (2011) Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells. ACS Nano 5:959–967. doi:10.1021/nn102295p

    Article  CAS  Google Scholar 

  22. Chénais S, Forget S (2012) Recent advances in solid-state organic lasers. Polym Int 61:390–406. doi:10.1002/pi.3173

    Article  Google Scholar 

  23. Hutter E, Fendler JH (2004) Exploitation of localized surface plasmon resonance. Adv Mater 16:1685–1706. doi:10.1002/adma.200400271

    Article  CAS  Google Scholar 

  24. Bastys V, Pastoriza-Santos I, Rodríguez-González B et al (2006) Formation of silver nanoprisms with surface plasmons at communication wavelengths. Adv Funct Mater 16:766–773. doi:10.1002/adfm.200500667

    Article  CAS  Google Scholar 

  25. Tian Y, Shi X, Lu C et al (2009) Charge separation in solid-state gold nanoparticles-sensitized photovoltaic cell. Electrochem Commun 11:1603–1605. doi:10.1016/j.elecom.2009.06.007

    Article  CAS  Google Scholar 

  26. Chen Y, Munechika K, Ginger DS (2007) Dependence of fluorescence intensity on the spectral overlap between fluorophores and plasmon resonant single silver nanoparticles. Nano Lett 7:690–696. doi:10.1021/nl062795z

    Article  CAS  Google Scholar 

  27. Jain PK, Qian W, El-sayed MA (2006) Ultrafast cooling of photoexcited electrons in gold nanoparticle-thiolated DNA conjugates involves the dissociation of the gold-thiol bond. J Am Chem Soc 128:2426–2433

    Article  CAS  Google Scholar 

  28. Henzie J, Grünwald M, Widmer-Cooper A et al (2011) Self-assembly of uniform polyhedral silver nanocrystals into densest packings and exotic superlattices. Nat Mater 11:131–137. doi:10.1038/nmat3178

    Article  Google Scholar 

  29. Wu H-J, Henzie J, Lin W-C et al (2012) Membrane-protein binding measured with solution-phase plasmonic nanocube sensors. Nat Methods 9:1189–1191. doi:10.1038/nmeth.2211

    Article  CAS  Google Scholar 

  30. Deng Y, Tüysüz H, Henzie J, Yang P (2011) Templated synthesis of shape-controlled, ordered TiO2 cage structures. Small 7:2037–2040. doi:10.1002/smll.201100579

    Article  CAS  Google Scholar 

  31. Juvé V, Scardamaglia M, Maioli P et al (2009) Cooling dynamics and thermal interface resistance of glass-embedded metal nanoparticles. Phys Rev B 80:195406. doi:10.1103/PhysRevB.80.195406

    Article  Google Scholar 

  32. Takeda Y, Lee C, Bandourko VV, Kishimoto N (2002) Smart materials—fundamentals and applications. Copper nanoparticle composites in insulators by negative ion implantation for optical application. Mater Trans 43:1057–1060. doi:10.2320/matertrans.43.1057

    Article  CAS  Google Scholar 

  33. Bigot J-Y, Halté V, Merle J-C, Daunois A (2000) Electron dynamics in metallic nanoparticles. Chem Phys 251:181–203. doi:10.1016/S0301-0104(99)00298-0

    Article  CAS  Google Scholar 

  34. Aeschlimann M (2004) Electron dynamics in metallic nanoparticles. In: Nalva H (ed) Encyclopedia of nanoscience and nanotechnology. American Scientific Publishers, Kaiserslautern, pp 1–36

    Google Scholar 

  35. Lysenko S, Jimenez J, Zhang G, Liu H (2006) Nonlinear optical dynamics of glass-embedded silver nanoparticles. J Electron Mater 35:1715–1721. doi:10.1007/s11664-006-0224-8

    Article  CAS  Google Scholar 

  36. Logunov SL, Ahmadi TS, El-Sayed MA et al (1997) Electron dynamics of passivated gold nanocrystals probed by subpicosecond transient absorption spectroscopy. J Phys Chem B 101:3713–3719. doi:10.1021/jp962923f

    Article  CAS  Google Scholar 

  37. Sharma B, Frontiera RR, Henry A-I et al (2012) SERS: materials, applications, and the future. Mater Today 15:16–25. doi:10.1016/S1369-7021(12)70017-2

    Article  CAS  Google Scholar 

  38. Merchant SM, Kang SH, Sanganeria M et al (2001) Copper interconnects for semiconductor devices. Jom 53:43–48. doi:10.1007/s11837-001-0103-y

    Article  CAS  Google Scholar 

  39. Jain PK, El-Sayed MA (2010) Plasmonic coupling in noble metal nanostructures. Chem Phys Lett 487:153–164. doi:10.1016/j.cplett.2010.01.062

    Article  CAS  Google Scholar 

  40. Puišo J, Prosyčevas I, Guobiene A, Tamulevičius S (2008) Plasmonic properties of silver in polymer. Mater Sci Eng B Solid-State Mater Adv Technol 149:230–236. doi:10.1016/j.mseb.2007.09.081

    Article  Google Scholar 

  41. Manzani D, Almeida JMP, Napoli M et al (2013) Nonlinear optical properties of tungsten lead–pyrophosphate glasses containing metallic copper nanoparticles. Plasmonics 8:1667–1674. doi:10.1007/s11468-013-9585-z

    Article  CAS  Google Scholar 

  42. Pardo A, Buijnsters JG, Endrino JL et al (2013) Effect of the metal concentration on the structural, mechanical and tribological properties of self-organized a-C:Cu hard nanocomposite coatings. Appl Surf Sci 280:791–798. doi:10.1016/j.apsusc.2013.05.063

    Article  CAS  Google Scholar 

  43. Chaus AS, Fedosenko TN, Rogachev AV, Čaplovič Ľ (2014) Surface, microstructure and optical properties of copper-doped diamond-like carbon coating deposited in pulsed cathodic arc plasma. Diam Relat Mater 42:64–70. doi:10.1016/j.diamond.2014.01.001

    Article  CAS  Google Scholar 

  44. Chan YH, Huang CF, Ou KL, Peng PW (2011) Mechanical properties and antibacterial activity of copper doped diamond-like carbon films. Surf Coatings Technol 206:1037–1040. doi:10.1016/j.surfcoat.2011.07.034

    Article  CAS  Google Scholar 

  45. Tamulevičius T, Peckus D, Tamulevičiene A, et al. (2014) Dynamic optical properties of amorphous diamond like carbon nanocomposite films doped with Cu and Ag nanoparticles. 9163:91632J. doi: 10.1117/12.2061197.

  46. Yaremchuk I, Tamulevičius T, Fitio V et al (2013) Guide-mode resonance characteristics of periodic structure on base of diamond-like carbon film. Opt Commun 301–302:1–6. doi:10.1016/j.optcom.2013.03.032

    Article  Google Scholar 

  47. Tamulevičius T, Šeperys R, Andrulevičius M et al (2012) Application of holographic sub-wavelength diffraction gratings for monitoring of kinetics of bioprocesses. Appl Surf Sci 258:9292–9296. doi:10.1016/j.apsusc.2012.04.022

    Article  Google Scholar 

  48. Meškinis Š, Čiegis A, Vasiliauskas A et al (2014) Optical properties of diamond like carbon films containing copper, grown by high power pulsed magnetron sputtering and direct current magnetron sputtering: structure and composition effects. Thin Solid Films 581:48–53. doi:10.1016/j.tsf.2014.11.045

    Article  Google Scholar 

  49. Dwivedi N, Kumar S, Malik HK et al (2012) Investigation of properties of Cu containing DLC films produced by PECVD process. J Phys Chem Solids 73:308–316. doi:10.1016/j.jpcs.2011.10.019

    Article  CAS  Google Scholar 

  50. Zhang H, Chen Y, Liao B et al (2013) Effect of C2H2 flow rate on microstructure and properties of nc-Cu/a-C:H nanocomposite films prepared by filtered cathodic vaccum arc technique. Nucl Instruments Methods Phys Res Sect B Beam Interact with Mater Atoms 307:137–142. doi:10.1016/j.nimb.2013.01.012

    Article  CAS  Google Scholar 

  51. Ziashahabi A, Ghodselahi T, Heidari saani M (2013) Localized surface plasmon resonance properties of copper nano-clusters: a theoretical study of size dependence. J Phys Chem Solids 74:929–933. doi:10.1016/j.jpcs.2013.02.009

    Article  CAS  Google Scholar 

  52. Grant CD, Schwartzberg AM, Yang Y et al (2004) Ultrafast study of electronic relaxation dynamics in Au11 nanoclusters. Chem Phys Lett 383:31–34. doi:10.1016/j.cplett.2003.10.126

    Article  CAS  Google Scholar 

  53. Takeda Y, Lee CG, Kishimoto N (2002) Nonlinear optical properties of Cu nanoparticle composites fabricated by 60 keV negative ion implantation. Nucl Instruments Methods Phys Res Sect B Beam Interact with Mater Atoms 191:422–427. doi:10.1016/S0168-583X(02)00585-2

    Article  CAS  Google Scholar 

  54. Takeda Y, Umeda N, Gritsyna V, Kishimoto N (2001) Optical transient resonance of copper nanoparticle composites synthesized by negative ion implantation. Nucl Instruments Methods Phys Res Sect B Beam Interact with Mater Atoms 175–177:463–467. doi:10.1016/S0168-583X(00)00570-X

    Article  Google Scholar 

  55. Takeda Y, Lu J, Plaksin OA et al (2004) Optical properties of dense Cu nanoparticle composites fabricated by negative ion implantation. Nucl Instruments Methods Phys Res Sect B Beam Interact with Mater Atoms 219–220:737–741. doi:10.1016/j.nimb.2004.01.153

    Article  Google Scholar 

  56. Halonen M, Lipovskii AA, Svirko YP (2007) Femtosecond absorption dynamics in glass-metal nanocomposites. Opt Express 15:6840–5

    Article  CAS  Google Scholar 

  57. Halonen M, Lipovskii A, Zhurikhina V et al (2009) Spectral mapping of the third-order optical nonlinearity of glass-metal nanocomposites. Opt Express 17:17170–8

    Article  CAS  Google Scholar 

  58. Link S, El-Sayed MA (2003) Optical properties and ultrafast dynamics of metallic nanocrystals. Annu Rev Phys Chem 54:331–66. doi:10.1146/annurev.physchem.54.011002.103759

    Article  CAS  Google Scholar 

  59. Vollmer M, Kreibig U (1995) Optical properties of metal clusters. Springer S, Berlin

    Google Scholar 

  60. Ishida Y, Togashi T, Yamamoto K et al (2011) Non-thermal hot electrons ultrafastly generating hot optical phonons in graphite. Sci Rep 1:1–5. doi:10.1038/srep00064

    Article  Google Scholar 

  61. Bigot JY, Merle JY, Cregut O, Daunois A (1995) Electron dynamics in copper metallic nanoparticles probed with femtosecond optical pulses. Phys Rev Lett 75:4702–4705. doi:10.1103/PhysRevLett.75.4702

    Article  CAS  Google Scholar 

  62. Dong ZW, Yang XC, Li ZH et al (2009) Ultrafast dynamics of copper nanoparticles embedded in soda-lime silicate glass fabricated by ion exchange. Thin Solid Films 517:6046–6049. doi:10.1016/j.tsf.2009.04.053

    Article  CAS  Google Scholar 

  63. Rashidi-Huyeh M, Volz S, Palpant B (2008) Non-Fourier heat transport in metal-dielectric core-shell nanoparticles under ultrafast laser pulse excitation. Phys Rev B 78:125408. doi:10.1103/PhysRevB.78.125408

    Article  Google Scholar 

Download references

Acknowledgments

This research was funded by the European Social Fund under the Global Grant measure (project No. VP1-3.1-ŠMM-07-K-03-057). This research was performed within COST action MP1205.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Domantas Peckus.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peckus, D., Tamulevičius, T., Meškinis, Š. et al. Linear and Nonlinear Absorption Properties of Diamond-Like Carbon Doped With Cu Nanoparticles. Plasmonics 12, 47–58 (2017). https://doi.org/10.1007/s11468-016-0227-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-016-0227-0

Keywords

Navigation