Skip to main content
Log in

Plasmon-Induced Transparency and Refractive Index Sensing in Side-Coupled Stub-Hexagon Resonators

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

A nanoscale structure which comprises metal-insulator-metal (MIM) waveguide, stub resonator, and hexagonal resonator is proposed to realize plasmon-induced transparency (PIT) response. The characteristics of the device are numerically investigated with different geometrical parameters. Benefitting from the narrow transparency window and long coupling length between two resonators, the proposed devices are able to act as a nanosensor for refractive index (RI) sensing with figure-of-merit (FOM) of 178 and 140 RIU−1 near RI of 1 and 1.33, respectively. Furthermore, the FOM can be further improved by employing symmetric structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Boller KJ, Imamolu A, Harris SE (1991) Observation of electromagnetically induced transparency. Phys Rev Lett 66:2593–2596

    Article  CAS  Google Scholar 

  2. Fleischhauer M, Imamoglu A, Marangos JP (2005) Electromagnetically induced transparency: optics in coherent media. Rev of Mod Phys 77:633–673

    Article  CAS  Google Scholar 

  3. Zhang S, Genov DA, Wang Y, Liu M, Zhang X (2008) Plasmon-induced transparency in metamaterials. Phys Rev Lett 101:047401

    Article  Google Scholar 

  4. Liu N, Langguth L, Weiss T, Kastel J, Fleischhauer M, Pfau T, Giessen H (2009) Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit. Nat Mat 8:758–762

    Article  CAS  Google Scholar 

  5. Stockman MI (2011) Nanoplasmonics: past, present, and glimpse into future. Opt Express 19:22029–22106

    Article  Google Scholar 

  6. Lal S, Link S, Halas NJ (2007) Nano-optics from sensing to waveguiding. Nat Photon 1:641–648

    Article  CAS  Google Scholar 

  7. Zeng S, Hu S, Xia J, Anderson T, Dinh XQ, Meng X, Coquet P, Yong KT (2015) Graphene-MoS2 hybrid nanostructures enhanced surface plasmon resonance biosensors. Sensors Actuators B 207:801–810

    Article  CAS  Google Scholar 

  8. Chen CY, Un IW, Tai NH, Yen TJ (2009) Asymmetric coupling between subradiant and supperradiant plasmonic resonances and its enhanced sensing performance. Opt Express 17:15372–15380

    Article  CAS  Google Scholar 

  9. Chen Z, Song X, Jiao R, Duan G, Wang L, Yu L (2015) Tunable electromagnetically induced transparency in plasmonic system and its application in nanosensor and spectral splitting. IEEE Photon J 7:4801408

    Google Scholar 

  10. Liu J, Xu B, Zhang J, Song G (2013) Double plasmon-induced transparency in hybrid waveguide-plasmon system and its application for localized plasmon resonance sensing with high figure of merit. Plasmonics 8:995–1001

    Article  CAS  Google Scholar 

  11. Chen Z, Cao X, Song X, Wang L, Li Y (2016) Side-coupled cavity-induced Fano resonance and its application in nanosensor. Plasmonics 11:307–313

    Article  CAS  Google Scholar 

  12. Zhang ZD, Wang RB, Zhang ZY, Tang J, Zhang WD, Xue CY, and Yan SB (2016) Electomagnetically induced transparency and refractive index sensing for a plasmonic waveguide with a stub coupled ring resonator. Plasmonics to be appeared

  13. Fan S, Suh W (2003) Temporal coupled-mode theory for the Fano resonance in optical resonators. J Opt Soc Am A 20:569–572

    Article  Google Scholar 

  14. Xie YY, Huang YX, Zhao WL, Xu W, He C (2015) A novel plasmonic sensor based on metal-insulator-metal waveguide with side-coupled hexagonal cavity. IEEE Photon J 7:4800612

    Google Scholar 

  15. Wu T, Liu Y, Yu Z, Peng Y, Shu C, He H (2014) The sensing characteristics of plasmonic waveguide with a single defect. Opt Commun 323:44–48

    Article  CAS  Google Scholar 

  16. Wu T, Liu Y, Yu Z, Peng Y, Shu C, Han Y (2014) The sensing characteristics of plasmonic waveguide with a ring resonator. Opt Express 22:7669–7677

    Article  CAS  Google Scholar 

  17. Jin X, Huang X, Tao J, Lin X, Zhang Q (2010) A novel nanometeric plasmonic refractive index sensor. IEEE Trans Nanotechnol 9:134–137

    Article  Google Scholar 

  18. Matsui H, Bdalawa W, Ikehata A, Tabata H (2013) Oxide surface plasmon resonance for a new sensing platform in the near-infrared range. Adv Optical Material 1:397–403

    Article  Google Scholar 

  19. Offermans P, Schaafama MC, Rodrigues SRK, Zeng Y, Calama MC, Brongersma SH, Rivas JG (2011) Universal scaling of the figure of merit of plasmonic sensors. ACS Nano 5:5151–5157

    Article  CAS  Google Scholar 

  20. Hicks EM, Zhang X, Zou S, Lyandres O, Spears KG, Schatz GC, Duyne RPV (2015) Plasmonic properties of film over nanowell surfaces fabricated by nanosphere lithography. J Phys Chem B 109:22351–22358

    Article  Google Scholar 

  21. Bagramipanah M, Gupta SD, Abasahl B, Martin OJF (2015) Cavity-coupled plasmonic device with enhanced sensitivity and figure-of-merit. ACS Nano 9:621–7633

    Google Scholar 

  22. Henzie J, Lee MH, Odom T (2007) Multiscale patterning of plasmonic metamaterials. Nat Nanotechnol 2:549–554

    Article  CAS  Google Scholar 

  23. Pryc IM, Kelaita YA, Aydin K, Atwater HA (2011) Compliant metamaterials for resonantly enhanced infrared absorption spectroscopy and refractive index sensing. ACS Nano 5:8167–8174

    Article  Google Scholar 

  24. Ren M, Pan C, Li Q, Cai W, Zhang X, Wu Q, Fan S, Xu J (2013) Isotropic spiral plasmonic metamaterial for sensing large refractive index change. Opt Lett 38:3133–3136

    Article  Google Scholar 

  25. Zubiate P, Zamarreno CR, Villar ID, Matias IR, Arregui FJ (2015) Experimental study and sensing applications of polarization-dependent lossy mode resonances generated by D-shaped coated optical fibers. J Lightw Technol 33:2412–2418

    Article  CAS  Google Scholar 

  26. Zhu S, Pang F, Huang S, Zou F, Dong Y, Wang T (2015) High sensitivity refractive index sensor based on adiabatic tapered optical fiber deposited with nanofilm by ALD. Opt Express 23:13880–13888

    Article  CAS  Google Scholar 

  27. Huang T (2016) Highly sensitive SPR sensor based on D-shaped photonic crystal fiber coated with indium tin oxide at near-infrared wavelength. Plasmonics, to be appeared

  28. Dash JN, Jha R (2016) On the performance of grapheme-based D-shaped photonic crystal fibre biosensor using surface plasmon resonance. Plasmonics 10:1123–1131

    Article  Google Scholar 

  29. Kurter C, Tassin P, Zhang L, Komas Y, Zhuravel AP, Ustinov AV, Anlage SM, Soukoulis CM (2011) Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial. Phys Rev Lett 107:043901

    Article  Google Scholar 

  30. Chen Z, Hu Z, Yang H, Gong Q (2016) All-optical tunable on-chip plasmon-induced transparency based on two surface-plasmon-polaritons absorption. Applied Phys Lett 108:151104

    Article  Google Scholar 

  31. Zhu Y, Hu X, Yang H, Gong Q (2016) On-chip plasmon-induced transparency based on plasmonic coupled nanocavities. Scientific Reports 4:3752

    Article  Google Scholar 

  32. Song C, Nguyen NT, Tan SH, Asundi AK (2010) A tuneable micro-optofluidic bivonvex lens with mathematically predictable focal length. Microfluid Nanofluid 9:889–896

    Article  Google Scholar 

  33. Chong ZZ, Tor SB, Loh NH, Wong TN, Ganan-Calvo AM, Tan SH, Nguyen NT (2015) Acoustofluidic control of bubble size in microfluidic flow-focusing configuration. Lab Chip 15:996–999

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the National Natural Science Foundation of China (61605179), the Fundamental Research Funds for the Central Universities, China University of Geosciences (Wuhan) (162301132703, and G1323511665), and the 863 High Technology Plan (2015AA015502).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianye Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, C., Ding, H., Huang, T. et al. Plasmon-Induced Transparency and Refractive Index Sensing in Side-Coupled Stub-Hexagon Resonators. Plasmonics 13, 251–257 (2018). https://doi.org/10.1007/s11468-017-0506-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-017-0506-4

Keywords

Navigation