Skip to main content
Log in

Perfect Nonreciprocal Absorption Based on Metamaterial Slab

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In order to achieve nonreciprocal absorption, we design a metamaterial slab made of arrays of tilted metal layers. Through studying the extraordinary material dispersion, we derive the transfer matrix to calculate its transmittance and absorption. Given specific conditions and two opposite incidence directions, the slab can achieve total absorption for one direction and total transmittance for the other direction. The designed structure is demonstrated to be a perfect nonreciprocal absorber.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Wang Z, Chong YD, Joannopoulos John D, Soljacic M (2008) Reflection-free one-way edge modes in a gyromagnetic photonic crystal. Phys Rev Lett 100(1):013905

  2. Rechtsman MC et al (2013) Photonic floquet topological insulators. Nature 496(7444):196–200

  3. Hafezi M, Demler EA, Lukin MD, Taylor JM (2011) Robust optical delay lines with topological protection. Nature Phys 7(11):907–912

  4. Khanikaev AB et al (2013) Photonic topological insulators. Nature Mater 12(3):233–239

  5. Fang K, Yu Z, Fan S (2012) Realizing effective magnetic field for photons by controlling the phase of dynamic modulation. Nature Photon 6(11):782–787

  6. Fang YT, He HQ, Hu JX (2016) Transforming unidirectional edge waveguide into unidirectional air waveguide. IEEE J. Sel Top Quantum Electron 22:4901109

  7. Atwater HA, Polman A (2010) Plasmonics for improved photovoltaic devices. Nat Mater 9(3):205–213

  8. Sai H et al (2003) Solar selective absorbers based on two-dimensional W surface gratings with submicron periods for high-temperature photothermal conversion. Sol Energy Mater Sol Cells 79(1):35

  9. Tittl A et al (2011) Palladium-based plasmonic perfect absorber in the visible wavelength range and its application to hydrogen sensing. Nano Lett 11(10):4366

  10. Du QG, Kam CH, Demir HV, Yu HY, Sun XW (2011) Enhanced optical absorption in nanopatterned silicon thin films with a nano-cone-hole structure for photovoltaic applications. Opt Lett 36(9):1713–1715

  11. Lee J, Zhang ZM (2006) Design and fabrication of planar multilayer structures with coherent thermal emission characteristics. J Appl Phys 100(6):063529

  12. Narayanaswamy A, Chen G (2004) Thermal emission control with one-dimensional metallodielectric photonic crystals. Phys Rev B 70(12):125101

  13. Yu Z, Fan S (2009) Complete optical isolation created by indirect interband photonic transitions. Nature Photon 3(2):91–94

  14. Nefedov IS, Valagiannopoulos CA, Hashemi SM, Nefedov EI (2013a) Total absorption in asymmetric hyperbolic media. Sci Rep 3(9):2662

  15. Nefedov IS, Valagiannopoulos CA, Melnikov LA (2013b) Perfect absorption in graphene multilayers. J Opt 15:114003

  16. Hashemiand SM, Nefedov IS (2012) Wideband perfect absorption in arrays of tilted carbon nanotubes. Phys Rev B 86:195411

  17. Barnes WL (2006) Surface plasmon polariton length scales: a route to sub-wavelength optics. J Opt A: Pure Appl Opt 8:S87–S93

Download references

Acknowledgements

This work was supported by the Senior Talent Foundation of Jiangsu University under Grant No. 13JDG003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun-tuan Fang.

Appendix

Appendix

In the coordinate system x’y’z’, the electric displace vector D 'and electric filed vector E 'satisfies

$$ {\mathbf{D}}^{\mathbf{\hbox{'}}}={\varepsilon}_0{\tilde{\varepsilon}}^{\hbox{'}}{\mathbf{E}}^{\mathbf{\hbox{'}}} $$
(27)

where

$$ {\tilde{\varepsilon}}^{\hbox{'}}=\left[\begin{array}{ccc}\hfill {\varepsilon}_{xx}\hfill & \hfill 0\hfill & \hfill 0\hfill \\ {}\hfill 0\hfill & \hfill {\varepsilon}_{yy}\hfill & \hfill 0\hfill \\ {}\hfill 0\hfill & \hfill 0\hfill & \hfill {\varepsilon}_{zz}\hfill \end{array}\right] $$
(28)

When the coordinate system xyz’ is rotated anticlockwise around y’ axis for an angle of φ, the basic vectors in the new coordinate system xyz and old coordinate system xyz’ have the following relation

$$ \left[\begin{array}{c}\hfill \hat{x}\hfill \\ {}\hfill \hat{y}\hfill \\ {}\hfill \hat{z}\hfill \end{array}\right]=\left[\begin{array}{ccc}\hfill \cos \varphi \hfill & \hfill 0\hfill & \hfill \sin \varphi \hfill \\ {}\hfill 0\hfill & \hfill 1\hfill & \hfill 0\hfill \\ {}\hfill \hbox{-} \sin \varphi \hfill & \hfill 0\hfill & \hfill \cos \varphi \hfill \end{array}\right]\left[\begin{array}{c}\hfill {\hat{x}}^{'}\hfill \\ {}\hfill {\hat{y}}^{'}\hfill \\ {}\hfill {\hat{z}}^{'}\hfill \end{array}\right]=\mathrm{P}\left[\begin{array}{c}\hfill {\hat{x}}^{'}\hfill \\ {}\hfill {\hat{y}}^{'}\hfill \\ {}\hfill {\hat{z}}^{'}\hfill \end{array}\right] $$
(29)

where \( \mathrm{P}=\left[\begin{array}{ccc}\hfill \cos \varphi \hfill & \hfill 0\hfill & \hfill \sin \varphi \hfill \\ {}\hfill 0\hfill & \hfill 1\hfill & \hfill 0\hfill \\ {}\hfill \hbox{-} \sin \varphi \hfill & \hfill 0\hfill & \hfill \cos \varphi \hfill \end{array}\right] \).

In the new coordinate system xyz, the electric displace vector D and electric filed vector E satisfies

$$ \mathbf{D}={\varepsilon}_0\tilde{\varepsilon}\mathbf{E} $$
$$ \tilde{\varepsilon}{=\mathrm{P}}^{\hbox{'}}{\tilde{\varepsilon}}^{\hbox{'}}\mathrm{P}=\left[\begin{array}{ccc}\hfill {\varepsilon}_{xx}\hfill & \hfill 0\hfill & \hfill {\varepsilon}_{xz}\hfill \\ {}\hfill 0\hfill & \hfill {\varepsilon}_{yy}\hfill & \hfill 0\hfill \\ {}\hfill {\varepsilon}_{zx}\hfill & \hfill 0\hfill & \hfill {\varepsilon}_{zz}\hfill \end{array}\right] $$
(30)

where

$$ \begin{array}{l}{\upvarepsilon}_{xx}={\upvarepsilon}_{xx}{ \cos}^2\upvarphi +{\upvarepsilon}_{yy}{ \sin}^2\upvarphi \\ {}{\upvarepsilon}_{xz}={\upvarepsilon}_{zx}=\left({\upvarepsilon}_{yy}-{\upvarepsilon}_{xx}\right) \sin \upvarphi \cos \upvarphi \\ {}{\upvarepsilon}_{zz}={\upvarepsilon}_{xx}{ \sin}^2\upvarphi +{\upvarepsilon}_{yy}{ \cos}^2\upvarphi \end{array} $$
(31)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, Yt., Zhang, Yc. Perfect Nonreciprocal Absorption Based on Metamaterial Slab. Plasmonics 13, 661–667 (2018). https://doi.org/10.1007/s11468-017-0558-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-017-0558-5

Keywords

Navigation