Skip to main content
Log in

Analysis of a Surface Plasmon Resonance Probe Based on Photonic Crystal Fibers for Low Refractive Index Detection

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

A photonic crystal fiber (PCF)-based surface plasmon resonance (SPR) probe with gold nanowires as the plasmonic material is proposed in this work. The coupling characteristics and sensing properties of the probe are numerically investigated by the finite element method. The probe is designed to detect low refractive indices between 1.27 and 1.36. The maximum spectral sensitivity and amplitude sensitivity are 6 × 103 nm/RIU and 600 RIU−1, respectively, corresponding to a resolution of 2.8 × 10−5 RIU for the overall refractive index range. Our analysis shows that the PCF-SPR probe can be used for lower refractive index detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Alexandre GB (2012) Plasmonics for future biosensors. Nat Photonics 6:709–613

    Article  Google Scholar 

  2. Kim YC, Cramer J, Battaglia T, Jordan JA, Soame NB, Peng W, Laurel LK, Karl SB (2013) Investigation of in situ surface plasmon resonance spectroscopy for environmental monitoring in and around deep-sea hydrothermal vents. Anal Lett 46(10):1607–1617

    Article  CAS  Google Scholar 

  3. Chen ST, Mark HM, Christopher TE, Jos B (2010) Advances in surface plasmon resonance biosensor technology towards high-throughput, food-safety analysis. TrAC Trends Anal Chem 29(11):1305–1315

    Article  Google Scholar 

  4. Li L, Zhang X, Liang Y, Guang J, Peng W (2016) Dual-channel fiber surface plasmon resonance biological sensor based on a hybrid interrogation of intensity and wavelength modulation. J Biomed Opt. doi:10.1117/1.JBO.21.12.127001

    Google Scholar 

  5. Kretschmann E, Raether H (1968) Radiative decay of non-radiative surface plasmons excited by light. Zeitschrift Für Naturforschung A 23(12):2135–2136

    Article  CAS  Google Scholar 

  6. Gupta B, Verma R (2009) Surface plasmon resonance-based fiber optic sensors: principle, probe designs, and some applications. Journal of Sensors 2009:1–12

    Article  Google Scholar 

  7. Liedberg B, Nylander C, Lunström I (1983) Surface plasmon resonance for gas detection and biosensing. Sensors Actuators 4(2):299–304

    Article  CAS  Google Scholar 

  8. Gasior K, Martynkien T, Wojcik G, Mergo P, Urbanczyk W (2016) D-shape polymer optical fibres for surface plasmon resonance sensing. Opto-Electronics Review 24(4):209–215

    Article  CAS  Google Scholar 

  9. Cao J, Tu MH, Sun T, Grattan KTV (2013) Wavelength-based localized surface plasmon resonance optical fiber biosensor. Sensors Actuators B Chemical 181(5):611–619

    Article  CAS  Google Scholar 

  10. Shevchenko Y, Francis T, Derosa M, Albert J (2011) Surface Plasmon resonance optical fiber biosensor for label-free characterization of biomolecular interactions. Bio-optics: Design and Application 36(9):1121–1136

    Google Scholar 

  11. Marquez-Cruz V, Albert J (2015) High resolution NIR TFBG-assisted biochemical sensors. J Lightwave Technol 33(16):3363–3373

    Article  Google Scholar 

  12. Shevchenko Y, Chen C, Dakka MA, Albert J (2010) Polarization-selective grating excitation of plasmons in cylindrical optical fibers. Opt Lett 35(5):637–639

    Article  CAS  Google Scholar 

  13. Jitendra ND, Rajan J (2014) Graphene based birefringent photonic crystal fiber sensor using surface plasmon resonance. IEEE Photon Technology Letters 26:1092–1095

    Article  Google Scholar 

  14. Hassani A, Skorobogatiy M (2006) Design of the microstructured optical fiber-based surface plasmon resonance sensors with enhanced microfluidics. Opt Express 14(24):11616–11621

    Article  CAS  Google Scholar 

  15. Hassani A, Skorobogatiy M (2009) Photonic crystal fiber-based plasmonic sensors for the detection of bio-layer thickness. Journal of the Optical Society of America B-Optical Physics 26(8):1550–1557

    Article  CAS  Google Scholar 

  16. Hautakorpi M, Mattinen M, Ludvigsen H (2008) Surface-plasmon-resonance sensor based on three-hole microstructured optical fiber. Opt Express 16(12):8427–8432

    Article  Google Scholar 

  17. Otupiri R, Akowuah EK, Haxha S (2014) A novel Birefrigent photonic crystal fiber surface plasmon resonance biosensor. IEEE Photonics Journal 6(4):1–11

    Article  Google Scholar 

  18. Shuai BB, Li X, Zhang YT, Liu DM (2012) A multi-core holey fiber based plasmonic sensor with large detection range and high linearity. Opt Express 20:5974–5986

    Article  CAS  Google Scholar 

  19. Zhang PP, Yao JQ, Cui HX, Lu Y (2013) A surface plasmon resonance sensor based on a multi- core photonic crystal fiber. Optoelectron Lett 9(5):342–345

    Article  Google Scholar 

  20. Luan NN, Yao JQ, Wang R, Hao CJ, Wu BQ, Duan LC, Lu Y (2013) Numerical investigation of the microstructured optical fiber-based surface plasmon resonance sensor with silver nanolayer. Appl Mech Mater 411:1573–1576

    Article  Google Scholar 

  21. Yu X, Zhang Y, Pan SS, Shum P, Yan M, Leviatan Y, Li CM (2009) A selectively coated photonic crystal fiber based surface plasmon resonance sensor. J Opt 12:74–77

    Google Scholar 

  22. Rifat AA, Mahdiraji GA, Shee YG, Shawon MJ, Adikan FRM (2016) A novel photonic crystal fiber biosensor using surface plasmon resonance. Procedia Engineering 140:1–7

    Article  CAS  Google Scholar 

  23. Patnaik A, Senthilnathan K, Jha R (2015) Graphene-based conducting metal oxide coated d-shaped optical fiber spr sensor. IEEE Photon Technol Lett 27(23):1–1

    Article  Google Scholar 

  24. Zheng L, Zhang X, Ren X, Gao J, Shi L, Liu X, Wang Q, Huang Y (2011) Surface plasmon resonance sensors based on ag-metalized nanolayer in microstructured optical fibers. Opt Laser Technol 43(5):960–964

    Article  CAS  Google Scholar 

  25. Shuai BB, Xia L, Liu DM (2012) Coexistence of positive and negative refractive index sensitivity in the liquid-core photonic crystal fiber based plasmonic sensor. Opt Express 20(23):25858–25866

    Article  Google Scholar 

  26. Shieh JM, Wu SC, Ni WX, Kuo HC, Lai YF, Hsiang KC, Chen YC (2007) Enhanced light transmission for Si solar cells using antireflector of mesoporous silica with low refractive index. Lasers and Electro-Optics Society. doi:10.1109/LEOS.2007.4382410

    Google Scholar 

  27. Lin GR, Chang YC, Liu ES, Kuo HC, Lin HS (2007) Low refractive index Si nanopillars on Si substrate. Appl Phys Lett 90:1819231–1819233

    Google Scholar 

  28. Whitehea LA (2001) Enhanced effective refractive index total internal reflection image display, United States Patent 6304365

  29. Zhou C (2013) Theoretical analysis of double-microfluidic-channels photonic crystal fiber sensor based on silver nanowires. Opt Commun 288:42–46

    Article  CAS  Google Scholar 

  30. Hautakorpi M, Mattinen M, Ludvigsen H (2014) Surface-plasmon-resonance sensor based on three-hole microstructured optical fiber. Opt Express 16(12):8427–8432

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 51474069), China Postdoctoral Science Foundation funded project (Grant No. 2016 M59150), Natural Science Foundation of Heilongjiang Province (Grant No. E2016007), and City University of Hong Kong Applied Research Grant (ARG) No. 9667122 and Strategic Research Grant (SRG) No. 7004644.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chao Liu or Tao Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Yang, L., Liu, Q. et al. Analysis of a Surface Plasmon Resonance Probe Based on Photonic Crystal Fibers for Low Refractive Index Detection. Plasmonics 13, 779–784 (2018). https://doi.org/10.1007/s11468-017-0572-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-017-0572-7

Keywords

Navigation