Skip to main content
Log in

A Universal Plasmonic Polarization State Analyzer

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

We propose a universal plasmonic polarization state analyzer consisting of rectangular holes arranged along an Archimedes spiral in silver film. The analyzer can detect different polarization states of light including linear, circular, radial and azimuthal polarizations. The theoretical analysis of its transmitted field is performed on the basis of the dipole radiations, and the analytic expressions of the electric field distributions under different polarized illuminations are provided. The numerical simulations of the near-field transmissions are also conducted to verify the analytic results. The significant differences between the field distributions predict the practicability of the universal plasmonic polarization state analyzer in determining the incident light polarization states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ozbay E (2006) Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311(5758):189–193

    Article  CAS  PubMed  Google Scholar 

  2. Dienerowitz M, Mazilu M, Reece PJ, Krauss TF, Dholakia K (2008) Optical vortex trap for resonant confinement of metal nanoparticles. Opt Express 16(7):4991–4999

    Article  PubMed  Google Scholar 

  3. Schuller JA, Barnard ES, Cai W, Jun YC, White JS, Brongersma ML (2010) Plasmonics for extreme light concentration and manipulation. Nat Mater 9(3):193–204. doi:10.1038/nmat2630

    Article  CAS  PubMed  Google Scholar 

  4. Lee J, Hua B, Park S, Ha M, Lee Y, Fan Z, Ko H (2014) Tailoring surface plasmons of high-density gold nanostar assemblies on metal films for surface-enhanced Raman spectroscopy. Nano 6(1):616–623. doi:10.1039/c3nr 04752k

    Article  CAS  Google Scholar 

  5. Yuan W, Ho HP, Wu SY, Suen YK, Kong SK (2009) Polarization-sensitive surface plasmon enhanced ellipsometry biosensor using the photoelastic modulation technique. Sensor Actuat A-Phys 151(1):23–28. doi:10.1016/j.sna.2009.01.025

    Article  CAS  Google Scholar 

  6. Lin J, Mueller JPB, Wang Q, Yuan G, Antoniou N, Yuan XC, Capasso F (2013) Polarization-controlled tunable directional coupling of surface plasmon polaritons. Science 340(6130):331–334. doi:10.1126/science.1233746

    Article  CAS  PubMed  Google Scholar 

  7. Yin L, Vlasko-Vlasov VK, Pearson J, Hiller JM, Hua J, Welp U, Brown DE, Kimball CW (2005) Subwavelength focusing and guiding of surface plasmons. Nano Lett 5(7):1399–1402

    Article  CAS  PubMed  Google Scholar 

  8. Tsakmakidis KL, Boardman AD, Hess O (2007) ‘Trapped rainbow’ storage of light in metamaterials. Nature 450(7168):397–401. doi:10.1038/nature06285

    Article  CAS  PubMed  Google Scholar 

  9. Park S, Hahn JW (2009) Plasmonic data storage medium with metallic nano-aperture array embedded in dielectric material. Opt Express 17(22):20203–20210

    Article  CAS  PubMed  Google Scholar 

  10. Pan L, Park Y, Xiong Y, Ulin-Avila E, Wang Y, Zeng L, Xiong S, Rho J, Sun C, Bogy DB (2011) Maskless plasmonic lithography at 22 nm resolution. Sci Report 1:175

    Article  CAS  Google Scholar 

  11. Smolyaninov II, Hung YJ, Davis CC (2006) Super-resolution optics using short-wavelength surface plasmon polaritons. J Mod Opt 53(16–17):2337–2347. doi:10.1080/09500340600893784

    Article  Google Scholar 

  12. Casse BDF, Lu WT, Huang YJ, Gultep E, Menon L, Sridhar S (2010) Super-resolution imaging using a three-dimensional metamaterials nanolens. App Phys Lett 96(2):023114. doi:10.1063/1.3291677

    Article  CAS  Google Scholar 

  13. Wang C, Gan D, Zhao Y, Du C, Luo X (2008) Demagnifing super resolution imaging based on surface plasmon structures. Opt Express 16(8):5427–5434

    Article  PubMed  Google Scholar 

  14. Yang S, Chen W, Nelson RL, Zhan Q (2009) Miniature circular polarization analyzer with spiral plasmonic lens. Opt Lett 34(20):3047–3049

    Article  PubMed  Google Scholar 

  15. Chen W, Nelson RL, Zhan Q (2012) Efficient miniature circular polarization analyzer design using hybrid spiral plasmonic lens. Opt Lett 37(9):1442–1444

    Article  PubMed  Google Scholar 

  16. Chen W, Rui G, Abeysinghe DC, Nelson RL, Zhan Q (2012) Hybrid spiral plasmonic lens: towards an efficient miniature circular polarization analyzer. Opt Express 20(24):26299–26307

    Article  PubMed  Google Scholar 

  17. Li J, Tang P, Liu W, Huang T, Wang J, Wang Y, Zhu X (2015) Plasmonic circular polarization analyzer formed by unidirectionally controlling surface plasmon propagation. Appl Phys Lett 106(16):161106. doi:10.1063/1.4919063

    Article  CAS  Google Scholar 

  18. Zhang J, Guo Z, Li R, Wang W, Zhang A, Liu J, Qu J, Gao J (2015) Circular polarization analyzer based on the combined coaxial Archimedes’ spiral structure. Plasmonics 10(6):1255–1261. doi:10.1007/s11468-015-9917-2

    Article  CAS  Google Scholar 

  19. Afshinmanesh F, White JS, Cai W, Brongersma ML (2012) Measurement of the polarization state of light using an integrated plasmonic polarimeter. P Soc Photo-Opt Ins 1(2):125–129. doi:10.1515/nanoph-2012-0004

    Article  CAS  Google Scholar 

  20. Xie YB, Liu ZY, Wang QJ, Zhu YY, Zhang XJ (2014) Miniature polarization analyzer based on surface plasmon polaritons. Appl Phys Lett 105(10):101107. doi:10.1063/1.4895517

    Article  CAS  Google Scholar 

  21. Kim H, Park J, Cho SW, Lee SY, Kang M, Lee B (2010) Synthesis and dynamic switching of surface plasmon vortices with plasmonic vortex lens. Nano Lett 10(2):529–536. doi:10.1021/nl903380j

    Article  CAS  PubMed  Google Scholar 

  22. Maier SA (2007) Plasmonics: fundamentals and applications. Springer Science & Business Media, New York

    Book  Google Scholar 

  23. Zhu J, Cai X, Chen Y, Yu S (2013) Theoretical model for angular grating-based integrated optical vortex beam emitters. Opt Lett 38(8):1343–1345. doi:10.1364/OL. 38.001343

    Article  PubMed  Google Scholar 

  24. Lee SY, Kim K, Kim SJ, Park H, Kim KY, Lee B (2015) Plasmonic meta-slit: shaping and controlling near-field focus. Optica 2(1):6–13. doi:10.1364/optica. 2.000006.s001

    Article  CAS  Google Scholar 

  25. Palik ED (1998) Handbook of optical constants of solids. Academic press, New York

    Google Scholar 

  26. Tsai WY, Huang JS, Huang CB (2013) Selective trapping or rotation of isotropic dielectric microparticles by optical near field in a plasmonic Archimedes spiral. Nano Lett 14(2):547–552. doi:10.1021/nl403608a

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support of the Shandong Provincial Natural Science Foundation of China under Grant No. 2015ZRB01864.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuyun Teng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Li, P., Li, Y. et al. A Universal Plasmonic Polarization State Analyzer. Plasmonics 13, 1129–1134 (2018). https://doi.org/10.1007/s11468-017-0612-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-017-0612-3

Keywords

Navigation