Skip to main content
Log in

Analysis of Bloch Surface Waves at the Interface Between Two Semi-infinite Rugate Filters with Symmetric Refractive Index Profiles

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Surface electromagnetic waves are representation of Maxwell’s frequency domain equations at the interface of two dissimilar materials. In this article, two canonical boundary value problems have been formulated to analyze the multiplicity of electromagnetic surface waves at the interface between two dissimilar materials. In the first problem, interface between two semi-infinite rugate filters having symmetric refractive index profiles is considered and in the second problem, to enhance the multiplicity of surface electromagnetic waves, a homogeneous dielectric slab is included between two semi-infinite symmetric rugate filters. Multiplicity has been observed by varying the size of dielectric material from 0 to 1000 nm. Numerical results show that the number of Tamm waves of different phase speeds, different polarization states, different degrees of localization, and different field profiles that are being propagated at interface between two semi-infinite rugate filters having symmetric refractive profile is almost twice as when asymmetric refractive index profile is used. Having two interfaces when a homogeneous dielectric layer is placed between two semi-infinite rugate filters has increased the multiplicity of electromagnetic surface waves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Pulsifer DP, Lakhtakia A (2009) Multiple surface plasmon polariton waves. Electron Lett 45(22):1137–1138

    Article  Google Scholar 

  2. Polo JA, Lakhtakia A (2011) Surface electromagnetic waves: a review. Laser Photonics Rev 5(2):234–246

    Article  Google Scholar 

  3. Takayama O, Crasovan L-C, Johansen SK, Mihalache D, Artigas D, Torner L (2008) Dyakonov surface waves: a review. Electromagnetics 28(3):126–145

    Article  Google Scholar 

  4. Gao J, Lakhtakia A, Polo JA Jr, Lei M (2009) Dyakonov-Tamm wave guided by a twist defect in a structurally chiral material. JOSA A 26(7):1615–1621

    Article  PubMed  Google Scholar 

  5. Aurelio D, Liscidini M (2017) Electromagnetic field enhancement in Bloch surface waves. Phys Rev B 96(4):045308

    Article  Google Scholar 

  6. Descrovi E, Sfez T, Dominici L, Nakagawa W, Michelotti F, Giorgis F, Herzig H-P (2008) Near-field imaging of Bloch surface waves on silicon nitride one-dimensional photonic crystals. Opt Express 16(8):5453–5464

    Article  PubMed  Google Scholar 

  7. Sfez T, Descrovi E, Libo Y, Brunazzo D, Quaglio M, Dominici L, Nakagawa W et al (2010) Bloch surface waves in ultrathin waveguides: near-field investigation of mode polarization and propagation. JOSA B 27(8):1617–1625

    Article  CAS  Google Scholar 

  8. Rodriguez GA, Lonai JD, Mernaugh RL, Weiss SM (2014) Porous silicon Bloch surface and sub-surface wave structure for simultaneous detection of small and large molecules. Nanoscale Res Lett 9(1):383

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Farmer A et al (2012) Biosensing using surface electromagnetic waves in photonic band gap multilayers. Sensors Actuators B Chem 173:79–84

    Article  CAS  Google Scholar 

  10. Abdulhalim I, Zourob M, Lakhtakia A (2008) Surface plasmon resonance for biosensing: a mini-review. Electromagnetics 28(3):214–242

    Article  Google Scholar 

  11. Matveeva EG, Gryczynski Z, Malicka J, Lukomska J, Makowiec S, Berndt KW, Lakowicz JR, Gryczynski I (2005) Directional surface plasmon-coupled emission: application for an immunoassay in whole blood. Anal Biochem 344(2):161–167

    Article  CAS  PubMed  Google Scholar 

  12. Kim JT, Ju JJ, Park S, Kim M-s, Park SK, Lee M-H (2008) Chip-to-chip optical interconnect using gold long-range surface plasmon polariton waveguides. Opt Express 16(17):13133–13138

    Article  CAS  PubMed  Google Scholar 

  13. Viti L, Coquillat D, Politano A, Kokh KA, Aliev ZS, Babanly MB, Tereshchenko OE, Knap W, Chulkov EV, Vitiello MS (2015) Plasma-wave terahertz detection mediated by topological insulators surface states. Nano Lett 16(1):80–87

    Article  CAS  PubMed  Google Scholar 

  14. Mitrofanov O, Viti L, Dardanis E, Giordano MC, Ercolani D, Politano A, Sorba L, Vitiello MS (2017) Near-field terahertz probes with room-temperature nanodetectors for subwavelength resolution imaging. Sci Rep 7:44240

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Viti L, Jin H, Coquillat D, Politano A, Consejo C, Knap W, Vitiello MS (2016) Heterostructured hBN-BP-hBN nanodetectors at terahertz frequencies. Adv Mater 28(34):7390–7396

    Article  CAS  PubMed  Google Scholar 

  16. Viti L, Hu J, Coquillat D, Politano A, Knap W, Vitiello MS (2016) Efficient terahertz detection in black-phosphorus nano-transistors with selective and controllable plasma-wave, bolometric and thermoelectric response. Sci Rep 6:20474

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Dyakonov M, Shur M (1993) Shallow water analogy for a ballistic field effect transistor: new mechanism of plasma wave generation by dc current. Phys Rev Lett 71(15):2465–2468

    Article  CAS  PubMed  Google Scholar 

  18. Dyakonov M, Shur M (1996) Detection, mixing, and frequency multiplication of terahertz radiation by two-dimensional electronic fluid. IEEE Trans Electron Devices 43(3):380–387

    Article  CAS  Google Scholar 

  19. Giorgis F, Descrovi E, Summonte C, Dominici L, Michelotti F (2010) Experimental determination of the sensitivity of Bloch surface waves based sensors. Opt Express 18(8):8087–8093

    Article  CAS  PubMed  Google Scholar 

  20. Rodriguez GA, Ryckman JD, Jiao Y, Fuller RL, Weiss SM (2013) Real-time detection of small and large molecules using a porous silicon grating-coupled Bloch surface wave label-free biosensor. Frontiers in biological detection: from nanosensors to systems V. Int Soc Opt Photo 8570:857004

  21. Politano A, Viti L, Vitiello MS (2017) Optoelectronic devices, plasmonics, and photonics with topological insulators. APL Mater 5(3):035504

    Article  CAS  Google Scholar 

  22. Viti L, Hu J, Coquillat D, Knap W, Tredicucci A, Politano A, Vitiello MS (2015) Black phosphorus terahertz photodetectors. Adv Mater 27(37):5567–5572

    Article  CAS  PubMed  Google Scholar 

  23. Viti L, Politano A, Vitiello MS (2017) Black phosphorus nanodevices at terahertz frequencies: photodetectors and future challenges. Appl Mater 5(3):035602

    Article  CAS  Google Scholar 

  24. Politano A, Chiarello G (2014) Plasmon modes in graphene: status and prospect. Nano 6(19):10927–10940

    CAS  Google Scholar 

  25. Jamalpoor K, Zarifkar A, Miri M (2017) Application of graphene second-order nonlinearity in THz plasmons excitation. Photonics Nanostruct Fundam Appl 26:80–84

    Article  Google Scholar 

  26. Kravets VG, Jalil R, Kim YJ, Ansell D, Aznakayeva DE, Thackray B, Britnell L, Belle BD, Withers F, Radko IP, Han Z (2014) Graphene-protected copper and silver plasmonics. Sci Rep 4:5517

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Guler U, Shalaev VM, Boltasseva A (2015) Nanoparticle plasmonics: going practical with transition metal nitrides. Mater Today 18(4):227–237

    Article  CAS  Google Scholar 

  28. Ding W, Hsu L-Y, Schatz GC (2017) Plasmon-coupled resonance energy transfer: a real-time electrodynamics approach. J Chem Phys 146(6):064109

    Article  CAS  PubMed  Google Scholar 

  29. Cushing SK, Nianqiang W (2013) Plasmon-enhanced solar energy harvesting. Electrochem Soc Interface 22(2):63–67

    Article  CAS  Google Scholar 

  30. Sinibaldi A, Danz N, Descrovi E, Munzert P, Schulz U, Sonntag F, Dominici L, Michelotti F (2012) Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors. Sensors Actuators B Chem 174:292–298

    Article  CAS  Google Scholar 

  31. Faryad M, Maab H, Lakhtakia A (2011) Rugate-filter-guided propagation of multiple Fano waves. J Opt 13(7):075101

    Article  Google Scholar 

  32. Fahr S, Ulbrich C, Kirchartz T, Rau U, Rockstuhl C, Lederer F (2008) Rugate filter for light-trapping in solar cells. Opt Express 16(13):9332–9343

    Article  PubMed  Google Scholar 

  33. Lorenzo E, Oton CJ, Capuj NE, Ghulinyan M, Navarro-Urrios D, Gaburro Z, Pavesi L (2005) Fabrication and optimization of rugate filters based on porous silicon. Phys Status Solidi C 2(9):3227–3231

    Article  CAS  Google Scholar 

  34. Maab H, Faryad M, Lakhtakia A (2011) Surface electromagnetic waves supported by the interface of two semi-infinite rugate filters with sinusoidal refractive-index profiles. JOSA B 28(5):1204–1212

    Article  CAS  Google Scholar 

  35. Polo J, Mackay T, Lakhtakia A (2013) Electromagnetic surface waves: a modern perspective. Newnes

  36. Faryad M, Lakhtakia A (2010) Surface plasmon–polariton wave propagation guided by a metal slab in a sculptured nematic thin film. J Opt 12(8):085102

    Article  CAS  Google Scholar 

  37. Marcuse D (1991) Theory of dielectric optical waveguides (Academic, San Diego). Google Scholar 233–234

  38. Baumeister PW (2004) Optical coating technology. Lecture notes for the five-day short course engineering 823:7–4

  39. Kavokin AV, Shelykh IA, Malpuech G (2005) Lossless interface modes at the boundary between two periodic dielectric structures. Phys Rev B 72(23):233102

    Article  CAS  Google Scholar 

  40. Homola J, Yee SS, Gauglitz G (1999) Surface plasmon resonance sensors. Sensors Actuators B Chem 54(1-2):3–15

    Article  CAS  Google Scholar 

  41. Maab H, Faryad M (2014) Coupled Tamm waves guided by an isotropic and homogeneous dielectric layer in a rugate filter. J Mod Opt 61(12):986–993

    Article  CAS  Google Scholar 

  42. Liao P ed. (2012) Theory of dielectric optical waveguides 2e. Academic press

  43. Abbas F, Faryad M (2017) A highly sensitive multiplasmonic sensor using hyperbolic chiral sculptured thin films. J Appl Phys 122(17):173104

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tareq Manzoor.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manzoor, H., Manzoor, T., Saleem, S. et al. Analysis of Bloch Surface Waves at the Interface Between Two Semi-infinite Rugate Filters with Symmetric Refractive Index Profiles. Plasmonics 13, 2319–2328 (2018). https://doi.org/10.1007/s11468-018-0755-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-018-0755-x

Keywords

Navigation