Skip to main content
Log in

Comprehensive Study of Phase-Sensitive SPR Sensor Based on Metal–ITO Hybrid Multilayer

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Surface plasmon resonance (SPR) biosensor is widely used for its high precision and real-time analysis. In this paper, SPR biosensor based on the hybrid structure of metal–indium tin oxide (ITO)–WS2 are proposed and investigated. By optimizing the thickness of metals (Au, Cu, Ag), ITO and WS2, the reflectivity of 2.932 × 10−7 a.u and highest phase sensitivity of 1.711 × 106 deg/RIU are obtained by using Ag–ITO–WS2-dielectric structure. Compared with the traditional metal-based SPR sensor, the performance of the proposed one is improved up to ~ 25.8 times. The results show that ITO and WS2 have an important effect on enhancing SPR sensing performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Maharana PK, Srivastava T, Jha R (2014) On the performance of highly sensitive and accurate graphene-on-aluminum and silicon-based SPR niosensor for visible and near infrared. Plasmonics 9(5):1113–1120

    CAS  Google Scholar 

  2. Bianco M, Sonato A, Girolamo AD, Pascale M, Romanato F, Rinaldi R, Arima V (2017) An aptamer-based SPR-polarization platform for high sensitive OTA detection. Sensors Actuators B Chem 241:314–320

    CAS  Google Scholar 

  3. Meshginqalam B, Ahmadi MT, Ismail R, Sabatyan A (2017) Graphene/graphene oxide-based ultrasensitive surface plasmon resonance biosensor. Plasmonics 12(6):1991–1997

    CAS  Google Scholar 

  4. Zeng SW, Hu SY, Xia J, Anderson T, Dinh XQ, Meng XM, Coquet P, Yong KT (2015) Graphene–MoS2, hybrid nanostructures enhanced surface plasmon resonance biosensors. Sensors Actuators B Chem 207:801–810

    CAS  Google Scholar 

  5. Wu LM, Jia Y, Jiang LY, Guo J, Dai XY, Xiang YJ, Fan DY (2017) Sensitivity improved SPR biosensor based on the MoS2/graphene-aluminum hybrid structure. J Lightwave Technol 35(1):82–87

    CAS  Google Scholar 

  6. Beck U, Hertwig A, Kormunda M, Krause A, Kruger H, Lohse V, Nooke A, Pavlik J, Steinbach J (2011) SPR enhanced ellipsometric gas monitoring on thin iron doped tin oxide layers. Sensors Actuators B Chem 160(1):609–615

    CAS  Google Scholar 

  7. Patching SG (2014) Surface plasmon resonance spectroscopy for characterisation of membrane protein–ligand interactions and its potential for drug discovery. Biochim Biophys Acta 1838(1):43–55

    CAS  PubMed  Google Scholar 

  8. Zeng SW, Sreekanth KV, Shang JZ, Yu T, Chen CK, Yin F, Baillargeat D, Coquet P, Ho HP, Kabashin AV, Yong KT (2015) Graphene-gold metasurface architectures for ultrasensitive plasmonic biosensing. Adv Mater 27(40):6163–6169

    CAS  PubMed  Google Scholar 

  9. Hottin J, Wijaya E, Hay L, Maricot S, Bouazaoui M, Vilcot JP (2013) Comparison of gold and silver/gold bimetallic surface for highly: sensitive near-infrared SPR sensor at 1550 nm. Plasmonics 8(2):619–624

    CAS  Google Scholar 

  10. Srivastava T, Jha R, Das R (2011) High-performance bimetallic SPR sensor based on periodic-multilayer-waveguides. IEEE Photon Technol Lett 23(20):1448–1450

    CAS  Google Scholar 

  11. Han L, Ding HF, Huang TY, Wu X, Chen B, Ren K, Fu S (2018) Broadband optical reflection modulator in indium-tin-oxide-filled hybrid plasmonic waveguide with high modulation depth. Plasmonics 13(4):1309–1314

    CAS  Google Scholar 

  12. Luan QF, Zhou KB, Tan HN, Yang D, Yao X (2011) Au-NPs enhanced SPR biosensor based on hairpin DNA without the effect of nonspecific adsorption. Biosens Bioelectron 26(5):2473–2477

    CAS  PubMed  Google Scholar 

  13. Wang J, Song DQ, Wang LY, Zhang H, Zhang HQ, Sun Y (2011) Design and performances of immunoassay based on SPR biosensor with Au/Ag alloy nanocomposites. Sensors Actuators B Chem 157(2):547–553

    CAS  Google Scholar 

  14. Pal AK, Bharathi MD (2017) SERS enhancement, sensitivity and homogeneity studies on bi-metallic Ag-Cu films through tuning of broad band SPR towards red region. J Alloys Compd 698:460–468

    CAS  Google Scholar 

  15. Mitsushio M, Miyashita K, Higo M (2006) Sensor properties and surface characterization of the metal-deposited SPR optical fiber sensors with Au, Ag, Cu, and Al. Sensors Actuators A Phys 125(2):296–303

    CAS  Google Scholar 

  16. Meng LJ, Placido F (2003) Annealing effect on ITO thin films prepared by microwave-enhanced dc reactive magnetron sputtering for telecommunication applications. Surf Coat Technol 166(1):44–50

    CAS  Google Scholar 

  17. Mishra AK, Mishra SK (2015) Infrared SPR sensitivity enhancement using ITO/TiO2/silicon overlays. Europhys Lett 112:10001

    Google Scholar 

  18. Alam MZ, De LI, Boyd RW (2016) Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region. Science 352(6287):795–797

    CAS  PubMed  Google Scholar 

  19. Franzen S (2008) Surface plasmon polaritons and screened plasma absorption in indium tin oxide compared to silver and gold. J Phys Chem C 112(15):6027–6032

    CAS  Google Scholar 

  20. Srivastava SK, Verma R, Gupta BD (2016) Theoretical modeling of a self-referenced dual mode SPR sensor utilizing indium tin oxide film. Opt Commun 369:131–137

    CAS  Google Scholar 

  21. Mishra SK, Kumari D, Gupta BD (2012) Surface plasmon resonance based fiber optic ammonia gas sensor using ITO and polyaniline. Sensors Actuators B Chem 171:976–983

    Google Scholar 

  22. Mishra SK, Gupta BD (2013) Surface plasmon resonance based fiber optic pH sensor utilizing Ag/ITO/Al/hydrogel layers. Analyst 138(9):2640–2646

    CAS  PubMed  Google Scholar 

  23. Szunerits S, Castel X, Boukherroub R (2008) Surface plasmon resonance investigation of silver and gold films coated with thin indium tin oxide layers: influence on stability and sensitivity. J Phys Chem C 112(40):15813–15817

    CAS  Google Scholar 

  24. Maurya JB, François A, Prajapati YK (2018) Two-dimensional layered nanomaterial-based one-dimensional photonic crystal refractive index sensor. Sensors 18:857

    Google Scholar 

  25. Wu LM, Guo J, Wang QK, Lu SB, Dai XY, Xiang YJ, Fan DY (2017) Sensitivity enhancement by using few-layer black phosphorus-graphene/TMDCs heterostructure in surface plasmon resonance biochemical sensor. Sensors Actuators B Chem 249(C):542–548

    CAS  Google Scholar 

  26. Ouyang QY, Zeng SW, Dinh XQ, Coquet P, Yong KT (2016) Sensitivity enhancement of MoS2 nanosheet based surface plasmon resonance biosensor. Procedia Eng 140:134–139

    CAS  Google Scholar 

  27. Kooyman RPH (2008) Handbook of surface plasmon resonance. Spec Publ R Soc Chem 2:15–34

    Google Scholar 

  28. Xu Y, Hsieh CY, Wu L, Ang LK (2017) Ultrasensitive and highly accurate long-range surface plasmon resonance biosensors based on two-dimensional transition metal dichalcogenides. Agency for Science, Technology, and Research, Singapore

    Google Scholar 

  29. Ouyang QL, Zeng SW, Jiang L, Hong LY, Xu GX, Dinh XQY, Qian J, He SL, Qu JL, Coquet P, Yong KT (2016) Sensitivity enhancement of transition metal dichalcogenides/silicon nanostructure-based surface plasmon resonance biosensor. Sci Rep 6:28190

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang H, Zhang H, Dong JL, Hu SQ, Zhu WG, Qin WT, Lu HH, Yu JH, Guan HY, Gao SH, Li ZH, Liu WP, He M, Jun Z, Chen Z, Luo YH (2018) Sensitivity-enhanced surface plasmon resonance sensor utilizing a tungsten disulfide (WS2) nanosheets overlayer. Photonics Res 6(6):485–481

    CAS  Google Scholar 

  31. Maurya JB, Prajapati YK, Singh V, Saini JP (2015) Sensitivity enhancement of surface plasmon resonance sensor based on graphene–MoS2hybrid structure with TiO2–SiO2composite layer. Appl Phys A Mater Sci Process 121(2):525–533

    CAS  Google Scholar 

  32. Pang K, Dong W, Zhang B, Zhan SY, Wang XP (2016) A performance-enhanced bimetallic chip for the detection of cadmium ions with surface plasmon resonance. Plasmonics 11(4):1119–1128

    CAS  Google Scholar 

  33. Lu MD, Liang YZ, Qian SY, Li LX, Jing ZG, Masson JF, Peng W (2016) Optimization of surface plasmon resonance biosensor with Ag/Au multilayer structure and fiber-optic miniaturization. Plasmonics 12(3):663–673

    Google Scholar 

  34. Nguyen VT, Seo HB, Kim BC, Kim SK, Song CS, Gu MB (2016) Highly sensitive sandwich-type SPR based detection of whole H5Nx viruses using a pair of aptamers. Biosens Bioelectron 86:293–300

    CAS  PubMed  Google Scholar 

  35. Yi SJ, Yuk JS, Jung SH, Zhavnerko GK Kim YM, Ha KS (2003) Investigation of selective protein immobilization on charged protein array by wavelength interrogation-based SPR sensor. Mol Cell 15(3):333–340

    CAS  Google Scholar 

  36. Huang YH, Ho HP, Wu SY, Kong SK, Wong WW, Shum P (2011) Phase sensitive SPR sensor for wide dynamic range detection. Opt Lett 36(20):4092–4094

    CAS  PubMed  Google Scholar 

  37. Sonato A, Agostini M, Ruffato G, Gazzola E, Liuni D, Greco G, Romanato F (2016) A surface acoustic wave (SAW)-enhanced grating-coupling phase-interrogation surface plasmon resonance (SPR) microfluidic biosensor. Lab Chip 16(7):1224–1233

    CAS  PubMed  Google Scholar 

  38. Huang TY, Zeng SW, Zhao X, Cheng Z, Shum P (2018) Fano resonance enhanced surface plasmon resonance sensors operating in near-infrared. Photonics 5(23):5030023

    Google Scholar 

  39. Wu L, Chu HS, Koh WS, Li EP (2010) Highly sensitive graphene biosensors based on surface plasmon resonance. Opt Express 18(14):14395–14400

    CAS  PubMed  Google Scholar 

  40. Sreekanth KV, Zeng S, Yong KT, Yu T (2013) Sensitivity enhanced biosensor using graphene-based one-dimensional photonic crystal. Sensors Actuators B Chem 182(1):424–428

    CAS  Google Scholar 

  41. Mishra AK, Mishra SK, Gupta BD (2015) SPR based fiber optic sensor for refractive index sensing with enhanced detection accuracy and figure of merit in visible region. Opt Commun 344:86–91

    CAS  Google Scholar 

  42. Lu MD, Liang YZ, Qian SY, Li LX, Jing ZG, Masson JF, Peng W (2016) Optimization of surface pasmon resonance biosensor with Ag/Au multilayer structure and fiber-optic miniaturization. Plasmonics. 12(3):663–673

    Google Scholar 

  43. Wu L, Ling Z, Jiang L, Guo J, Dai XY, Xiang YJ, Fan DY (2016) Long-range surface plasmon with graphene for enhancing the sensitivity and detection accuracy of biosensor. IEEE Photonics J 8(2):1–9

    Google Scholar 

  44. Franzen S (2008) Surface plasmon polaritons and screened plasma absorption in indium tin oxide compared to silver and gold. J Phys Chem C 112(15):6027–6032

    CAS  Google Scholar 

  45. Liu HL, Shen CC, Su SH, Hsu CL, Li MY, Li LJ (2014) Optical properties of monolayer transition metal dichalcogenides probed by spectroscopic ellipsometry. Appl Phys Lett 105(20):201905

    Google Scholar 

  46. Zhao X, Huang TY, Ping PS, Wu X, Huang P, Wu YH, Cheng Z (2018) Sensitivity enhancement in surface plasmon resonance biochemical sensor based on transition metal dichalcogenides/graphene heterostructure. Sensors 18(7):2056

    Google Scholar 

  47. Hirai A, Matsumoto H, Minoshima K, Matsumoto H (2008) High-accuracy interferometer with a prism pair for measurement of the absolute refractive index of glass. Appl Opt 48(11):2045–2050

    Google Scholar 

  48. Wijaya E, Lenaerts C, Maricot S, Hastanin J, Habraken S, Vilcot JP, Szunerits S (2011) Surface plasmon resonance-based biosensors: from the development of different SPR structures to novel surface functionalization strategies. Curr Opin Solid State Mater Sci 15(5):208–224

    CAS  Google Scholar 

  49. Lynch DW, Olson CG, Weaver JH (1975) Optical properties of Ti, Zr, and Hf from 0.15 to 30 eV. Phys Rev B 11(10):3617–3624

    CAS  Google Scholar 

  50. Lee S, Hyung M, Shin HJ, Choi D (2013) Control of density and LSPR of Au nanoparticles on graphene. Nanotechnology 24(27):275702

    PubMed  Google Scholar 

  51. Huang TY, Zeng SW, Zhao X, Cheng Z, Shum P (2018) Fano resonance enhanced surface plasmon resonance sensors operating in near-infrared. Photonics 5(23):5030023

    Google Scholar 

Download references

Acknowledgments

This work was partially supported by the National Natural Science Foundation of China (61605179); the Fundamental Research Funds for the Central Universities, China University of Geosciences (Wuhan) (162301132703, G1323511665); the 863 High Technology Plan (2015AA015502); and the Fundamental Research Founds for National University, China University of Geosciences (Wuhan) (1810491T06).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianye Huang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, L., Zhao, X., Huang, T. et al. Comprehensive Study of Phase-Sensitive SPR Sensor Based on Metal–ITO Hybrid Multilayer. Plasmonics 14, 1743–1750 (2019). https://doi.org/10.1007/s11468-019-00968-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-019-00968-z

Keywords

Navigation