Skip to main content
Log in

Comprehensive Study of SPR Biosensor Performance Based on Metal-ITO-Graphene/TMDC Hybrid Multilayer

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

The heterostructures of two-dimensional (2D) materials have broad application prospects in surface plasmon resonance (SPR) biosensor. In order to enhance the sensitivity, we propose new a configuration of SPR biosensor based on Cu/Au/Ag-indium tin oxide (ITO)-graphene/two-dimensional transition metal dichalcogenide (TMDC) hybrid structures for highly sensitive sensors. The highest angular sensitivity with 219.4°/RIU for the Ag-ITO-WS2 is obtained. In addition, the SPR biosensor can also be used to detect analytes with different refractive index. The phase sensitivity of Cu-ITO-MoSe2 structure is 30.18 times higher than that of the single Cu thin film and 1.51 times higher than that of the Cu-ITO hybrid structure. It is believed that the SPR sensor has potential application prospects in environmental monitoring, chemical examination, and biological and gas detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wu L, Chu HS, Koh WS, Li EP (2010) Highly sensitive graphene biosensors based on surface plasmon resonance. Opt Express 18(14):14395–14400

    Article  CAS  PubMed  Google Scholar 

  2. Bianco M, Sonato A, Girolamo AD, Pascale M, Romanato F, Rinaldi R, Arima V (2017) An aptamer-based SPR-polarization platform for high sensitive OTA detection. Sensor Actuat B-Chem 241:314–320

    Article  CAS  Google Scholar 

  3. Lautner G, Balogh Z, Bardóczy V, Mészáros T, Gyurcsányi RE (2010) Aptamer-based biochips for label-free detection of plant virus coat proteins by spr imaging. Analyst 135(5):918–926

    Article  CAS  PubMed  Google Scholar 

  4. Marquezcruz V, Albert J (2015) High resolution nirtfbg-assisted biochemical sensors. J Lightwave Technol 33(16):3363–3373

    Article  Google Scholar 

  5. Tsargorodska A (2007) Research and development in optical biosensors for determination of toxic environmental pollutants. J Gerontol Soc Work 58(6):613

    Google Scholar 

  6. Tavousi A, Rostami A, Rostami G, Dolatyari M (2015) 3-D numerical analysis of Smith–Purcell-based terahertz wave radiation excited by effective surface plasmon. J Lightwave Technol 33(22):4640–4647

    Article  Google Scholar 

  7. Tavousi A, Mansouri-Birjandi MA, Janfaza M (2018) Optoelectronic application of graphene nanoribbon for mid-infrared bandpass filtering. Appl Opt 57(20):5800–5805

    Article  CAS  PubMed  Google Scholar 

  8. Zeng SW, Sreekanth KV, Shang JZ, Yu T, Chen CK, Yin F, Baillargeat D, Coquet P, Ho HP, Kabashin AV, Yong KT (2015) Graphene-gold metasurface architectures for ultrasensitive plasmonic biosensing. Adv Mater 27(40):6163–6169

    Article  CAS  PubMed  Google Scholar 

  9. Rakhshani MR, Tavousi A, Mansouri-Birjandi MA (2018) Design of a plasmonic sensor based on a square array of nanorods and two slot cavities with a high figure of merit for glucose concentration monitoring. Appl Opt 57(27):7798–7804

    Article  CAS  PubMed  Google Scholar 

  10. Hottin J, Wijaya E, Hay L, Maricot S, Bouazaoui M, Vilcot JP (2013) Comparison of gold and silver/gold bimetallic surface for highly: sensitive near-infrared SPR sensor at 1550 nm. Plasmonics 8(2):619–624

    Article  CAS  Google Scholar 

  11. Rakhshani MR, Mansouri-Birjandi MA (2017) Utilizing the metallic nano-rods in hexagonal configuration to enhance sensitivity of the plasmonic racetrack resonator in sensing application. Plasmonics 12:999–1006

    Article  CAS  Google Scholar 

  12. Han L, Ding HF, Huang TY, Wu X, Chen B, Ren K, Fu S (2018) Broadband optical reflection modulator in indium-tin-oxide-filled hybrid plasmonic waveguide with high modulation depth. Plasmonics 13(4):1309–1314

    Article  CAS  Google Scholar 

  13. Tavousi A, Rakhshani MR, Mansouri-Birjandi MA (2018) High sensitivity label-free refractometer based biosensor applicable to glycated hemoglobin detection in human blood using all-circular photoniccrystal ring resonators. Opt Commun 429:166–174

    Article  CAS  Google Scholar 

  14. Rakhshani MR, Mansouri-Birjandi MA (2018) A high-sensitivity sensor based on three-dimensional metal–insulator–metal racetrack resonator and application for hemoglobin detection. Photonic Nanostruct 32:28–34

    Article  Google Scholar 

  15. Rakhshani MR, Mansouri-Birjandi MA (2018) Engineering hexagonal array of nanoholes for high sensitivity biosensor and application for human blood group detection. IEEE T Nanotechnol 17(3):475–481

    Article  CAS  Google Scholar 

  16. Janfaza M, Mansouri-Birjandi MA, Tavousi A (2018) Tunable plasmon-induced reflection based on graphene nanoribbon Fabry-Perot resonator and nanodisks. Opt Mater 84:675–680

    Article  CAS  Google Scholar 

  17. Srivastava T, Jha R, Das R (2011) High-performance bimetallic SPR sensor based on periodic multilayer waveguides. IEEE Photon Technol Lett 23(20):1448–1450

    Article  CAS  Google Scholar 

  18. Shalabney A, Abdulhalim I (2011) Sensitivity-enhancement methods for surface plasmon sensors. Laser Photonics Rev 5(4):571–606

    Article  CAS  Google Scholar 

  19. Lu M, Liang Y, Qian S, Li LX, Jing ZG, Masson JF, Peng W (2016) Optimization of surface plasmon resonance biosensor with Ag/Au multilayer structure and fiber-optic miniaturization. Plasmonics 12(3):663–673

    Article  CAS  Google Scholar 

  20. Wang L, Sun Y, Wang J, Zhu X, Song D (2009) Sensitivity enhancement of spr biosensor with silver mirror reaction on the ag/au film. Talanta 78(1):265–269

    Article  CAS  PubMed  Google Scholar 

  21. Huang YH, Ho HP, Wu SY, Kong SK, Wong WW, Shum P (2011) Phase sensitive spr sensor for wide dynamic range detection. Opt Lett 36(20):4092–4094

    Article  CAS  PubMed  Google Scholar 

  22. Zhou YF, Zhang PF, He YH, Xu ZH, Liu L, Ji YH, Ma H (2014) Plasmon waveguide resonance sensor using an Au–MgF2 structure. Appl Opt 53(28):6344

    Article  PubMed  CAS  Google Scholar 

  23. Byun KM, Kim NH, Leem JW, Yu JS (2012) Enhanced surface plasmon resonance detection using porous ITO–gold hybrid substrates. Appl Phys B Lasers Opt 107(3):803–808

    Article  CAS  Google Scholar 

  24. Mishra SK, Kumari D, Gupta BD (2012) Surface plasmon resonance based fiber optic ammonia gas sensor using ITO and polyaniline. Sensor Actuat B-Chem 171:976–983

    Article  CAS  Google Scholar 

  25. Mishra SK, Gupta BD (2013) Surface plasmon resonance based fiber optic pH sensor utilizing Ag/ITO/Al/hydrogel layers. Analyst 138(9):2640–2646

    Article  CAS  PubMed  Google Scholar 

  26. Mishra AK, Mishra SK (2015) Infrared SPR sensitivity enhancement using ITO/TiO2/silicon overlays. EPL-Europhys Lett 112:10001

    Article  CAS  Google Scholar 

  27. Szunerits S, Castel X, Boukherroub R (2008) Surface plasmon resonance investigation of silver and gold films coated with thin indium tin oxide layers: influence on stability and sensitivity. J Phys Chem C 112(40):15813–15817

    Article  CAS  Google Scholar 

  28. Srivastava SK, Verma R, Gupta BD (2016) Theoretical modeling of a self-referenced dual mode SPR sensor utilizing indium tin oxide film. Opt Commun 369:131–137

    Article  CAS  Google Scholar 

  29. Sharma NK, Yadav S, Sajal V (2014) Theoretical analysis of highly sensitive prism based surface plasmon resonance sensor with indium tin oxide. Opt Commun 318:74–78

    Article  CAS  Google Scholar 

  30. Maurya JB, François A, Prajapati YK (2018) Two-dimensional layered nanomaterial-based one-dimensional photonic crystal refractive index sensor. Sensors 18(3):857

    Article  PubMed Central  CAS  Google Scholar 

  31. Zhu YW, Murali S, Cai WW, Li XS, Suk JW, Potts JR, Ruoff RS (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22(35):3906–3924

    Article  CAS  PubMed  Google Scholar 

  32. Kooyman RPH (2008) Handbook of surface plasmon resonance. R Soc Chem 2:15–34

    Google Scholar 

  33. Zhang N, Humbert G, Gong TX, Shum PP, Li KW, Auguste JL, Wu ZF, Hu JJ, Feng L, Dinh QX, Olivo M, Wei L (2016) Side-channel photonic crystal fiber for surface enhanced Raman scattering sensing. Sensor Actuat B Chem 233:195–201

    Article  CAS  Google Scholar 

  34. Verma R, Gupta BD, Jha R (2011) Sensitivity enhancement of a surface plasmon resonance based on biomolecules sensor using graphene and silicon layers. Sensor Actuat B Chem 160:623–631

    Article  CAS  Google Scholar 

  35. Maharana PK, Srivastava T, Jha R (2014) On the performance of highly sensitive and accurate graphene-on-aluminum and silicon-based SPR biosensor for visible and near infrared. Plasmonics 9(5):1113–1120

    Article  CAS  Google Scholar 

  36. Meshginqalam B, Ahmadi MT, Ismail R, Sabatyan A (2016) Graphene/graphene oxide-based ultrasensitive surface plasmon resonance biosensor. Plasmonics 12(6):1991–1997

    Article  CAS  Google Scholar 

  37. Ouyang QL, Zeng SW, Dinh XQ, Coquet P, Yong KT (2016) Sensitivity enhancement of MoS2 nanosheet based surface Plasmon resonance biosensor. Proc Eng 140:134–139

    Article  CAS  Google Scholar 

  38. Wu LM, Guo J, Wang QK, Lu SB, Dai XY, Xiang YJ, Fan DY (2017) Sensitivity enhancement by using few-layer black phosphorus-graphene/TMDCs heterostructure in surface plasmon resonance biochemical sensor. Sensor Actuat B Chem 249:542–548

    Article  CAS  Google Scholar 

  39. Ouyang QL, Zeng SW, Li J, Hong LY, Xu GX, Dinh XQ, Qian J, He SL, Qu JL, Coquet P, Yong KT (2016) Sensitivity enhancement of transition metaldichalcogenides/silicon nanostructure-based surface plasmon resonancebiosensor. Sci Rep 6:1–13

    Article  CAS  Google Scholar 

  40. Zeng SW, Hu SY, Xia J, Anderson T, Dinh XQ, Meng XM, Coquet P, Yong KT (2015) Graphene–MoS2 hybrid nanostructures enhanced surface plasmon resonancebiosensors. Sensor Actuat B Chem 207:801–810

    Article  CAS  Google Scholar 

  41. Zhao X, Huang TY, Ping PS, Wu X, Huang P, Pan J, Wu Y, Cheng Z Sensitivity enhancement in surface plasmon resonance biochemical sensor based on transition metal dichalcogenides/graphene heterostructure. Sensors 18(7):1–10

    Article  PubMed Central  CAS  Google Scholar 

  42. Lertvachirapaiboon C, Yamazaki R, Pienpinijtham P, Baba A, Ekgasit S, Thammacharoen C (2012) Solution-based fabrication of gold grating film for use as a surface plasmon resonance sensor chip. Sensor Actuat B Chem 173:316–321

    Article  CAS  Google Scholar 

  43. Tabassum R, Gupta BD (2016) Influence of oxide overlayer on the performance of a fiber optic SPR sensor with Al/Cu layers. IEEE J Sel Top Quant 23(2):1–8

    Google Scholar 

  44. Singhal R, Kabiraj D, Kulriya PK, PivinR JC, Chandra R, Avasthi DK (2013) Blue-shifted SPR of Au nanoparticles with ordering of carbon by dense ionization and thermal treatment. Plasmonics 8(2):295–305

    Article  CAS  Google Scholar 

  45. Medda SK, Mitra M, De G (2008) Tuning of Ag-SPR band position in refractive index controlled inorganic-organic hybrid SiO2-PEO-TiO2 films. J Chem Sci 120(6):565–572

    Article  CAS  Google Scholar 

  46. Mishra SK, Gupta BD (2012) Surface plasmon resonance-based fiber-optic hydrogen gas sensor utilizing indium–tin oxide (ITO) thin films. Plasmonics 7(4):627–632

    Article  CAS  Google Scholar 

  47. Dash JN, Jha R (2015) On the performance of graphene-based D-shaped photonic crystal fiber biosensor using surface plasmon resonance. Plasmonics 10(5):1123–1131

    Article  CAS  Google Scholar 

  48. Meshginqalam B, Barvestani J (2018) Performance enhancement of SPR biosensor based on phosphorene and transition metal dichalcogenides for sensing DNA hybridization. IEEE Sensors J 18(18):7537–7543

    Article  CAS  Google Scholar 

  49. Maharana PK, Jha R, Padhy P (2015) On the electric field enhancement and performance of SPR gas sensor based on graphene for visible and near infrared. Sensor Actuat B Chem 207(207):117–122

    Article  CAS  Google Scholar 

  50. Palik ED (1985) Handbook of optical constants of solids. Academic, New York

    Google Scholar 

  51. Hansen WH (1968) Electric fields produced by the propagation of plane coherentelectromagnetic radiation in a stratified medium. J Opt Soc Am 58(3):380–388

    Article  Google Scholar 

  52. Maharana PK, Jha R, Palei S (2014) Sensitivity enhancement by air mediated graphene multilayer based surface plasmon resonance biosensor for near infrared. Sensor Actuat B Chem 190:494–501

    Article  CAS  Google Scholar 

  53. Han L, Wu C (2019) A phase-sensitivity-enhanced surface plasmon resonance biosensor based on ITO - graphene hybrid structure. Plasmonics. https://doi.org/10.1007/s11468-018-0872-6

    Article  CAS  Google Scholar 

Download references

Funding

This work was partially supported by the National Natural Science Foundation of China (61605179), the Fundamental Research Funds for the Central Universities, China University of Geosciences (Wuhan) (162301132703, G1323511665), the 863 High Technology Plan (2015AA015502), and Fundamental Research Founds for National University, China University of Geosciences (Wuhan) (1810491T06 and 1810491B08).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianye Huang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, L., He, X., Ge, L. et al. Comprehensive Study of SPR Biosensor Performance Based on Metal-ITO-Graphene/TMDC Hybrid Multilayer. Plasmonics 14, 2021–2030 (2019). https://doi.org/10.1007/s11468-019-01004-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-019-01004-w

Keywords

Navigation