Skip to main content

Advertisement

Log in

Perfect Narrowband Absorber Based on Patterned Graphene-Silica Multilayer Hyperbolic Metamaterials

  • Published:
Plasmonics Aims and scope Submit manuscript

A Correction to this article was published on 02 July 2020

This article has been updated

Abstract

Graphene-based hyperbolic metamaterials are well known for their optical anisotropy, high absorption of electromagnetic radiation, and low energy loss. We proposed a novel multilayer graphene-silica hyperbolic metamaterial designed as a grating structure providing narrowband near-perfect absorption of radiation in a mid-infrared band. The absorber is designed for insensitivity of the absorptance peak positioning on the angle of the incident radiation and distinct polarization selectivity of absorption for the TM mode only. A new way of handling the absorption is achieved by varying the thickness of its combined graphene-silica layers. Possibly, the type of absorber will be applicable in the fields of optical sensing, photoelectric detection, and other potential fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Change history

  • 02 July 2020

    The original version of this article unfortunately contained a mistake.

References

  1. Liu X, Tyler T, Starr T, Starr AF, Jokerst NM, Padilla WJ (2011) Taming the blackbody with infrared metamaterials as selective thermal emitters. Phys Rev Lett 107(4):045901

    Article  CAS  Google Scholar 

  2. Wang H, Chang JY, Yang Y, Wang L (2016) Performance analysis of solar thermophotovoltaic conversion enhanced by selective metamaterial absorbers and emitters. Int J Heat Mass Transf 98:788–798

    Article  Google Scholar 

  3. Hao J, Zhou L, Qiu M (2012) Nearly total absorption of light and heat generation by plasmonic metamaterials. Phys Rev B 83(16):165107

    Article  CAS  Google Scholar 

  4. Wang Y, Sun T, Paudel T, Zhang Y, Ren Z, Kempa K (2011) Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells. Nano Lett 12(1):440–445

    Article  CAS  Google Scholar 

  5. Dincer F, Akgol O, Karaaslan M, Unal E, Sabah C (2014) Polarization angle independent perfect metamaterial absorbers for solar cell applications in the microwave, infrared, and visible regime. Prog Electromagn Res 144:93–101

    Article  Google Scholar 

  6. Aydin K, Ferry VE, Briggs RM, Atwater HA (2011) Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers. Nat Commun 2:517

    Article  CAS  Google Scholar 

  7. Rosenberg J, Shenoi RV, Vandervelde TE, Krishna S, Painter O (2009) A multispectral and polarization-selective surface-plasmon resonant midinfrared detector. Appl Phys Lett 95(16):161101

    Article  CAS  Google Scholar 

  8. Liu N, Mesch M, Weiss T, Hentschel M, Giessen H (2010) Infrared perfect absorber and its application as plasmonic sensor. Nano Lett 10(7):2342–2348

    Article  CAS  Google Scholar 

  9. Niesler FBP, Gansel JK, Fischbach S, Wegener M (2012) Metamaterial metal-based bolometers. Appl Phys Lett 100(20):203508

    Article  CAS  Google Scholar 

  10. Lai Y, Chen H, Zhang ZQ, Chan CT (2009) Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell. Phys Rev Lett 102(9):093901

    Article  CAS  Google Scholar 

  11. Landy NI, Sajuyigbe S, Mock JJ, Smith DR, Padilla WJ (2008) Perfect metamaterial absorber. Phys Rev Lett 100:207402

    Article  CAS  Google Scholar 

  12. Wu D, Li R, Liu Y, Yu Z, Yu L, Chen L, Liu C, Ma R, Ye H (2017) Ultra-narrow band perfect absorber and its application as plasmonic sensor in the visible region. Nanoscale Res Lett 12(1):427

    Article  CAS  PubMed Central  Google Scholar 

  13. Wu M, Zhao X, Zhang J, Schalch J, Duan G, Cremin K, Averitt RD, Zhang X (2017) A three-dimensional all-metal terahertz metamaterial perfect absorber. Appl Phys Lett 111(5):051101

    Article  CAS  Google Scholar 

  14. Li R, Wu D, Liu Y, Yu L, Yu Z, Ye H (2017) Infrared plasmonic refractive index sensor with ultra-high figure of merit based on the optimized all-metal grating. Nanoscale Res Lett 12(1):1

    Article  CAS  PubMed Central  Google Scholar 

  15. Lu X, Wan R, Zhang T (2015) Metal-dielectric-metal based narrow band absorber for sensing applications. Opt Express 23(23):29842–29847

    Article  CAS  Google Scholar 

  16. Li Z, Butun S, Aydin K (2014) Ultranarrow band absorbers based on surface lattice resonances in nanostructured metal surfaces. ACS Nano 8(8):8242–8848

    Article  CAS  PubMed Central  Google Scholar 

  17. Zhang M, Fang J, Zhang F, Chen J, Yu H (2017) Ultra-narrow band perfect absorbers based on Fano resonance in MIM metamaterials. Opt Commun 405:216–221

    Article  CAS  Google Scholar 

  18. Hoffman AJ, Alekseyev L, Narimanov EE, Gmachl C, Sivco DL (2007) Negative refraction in mid-infrared semiconductor metamaterials. Nat Mater 6(12):946–950

    Article  CAS  PubMed Central  Google Scholar 

  19. Krishnamoorthy HNS, Jacob Z, Narimanov E, Kretzschmar I, Menon VM (2012) Topological transition in metamaterials. Science 336(6078):205–209

    Article  CAS  PubMed Central  Google Scholar 

  20. Wang J, Yang L, Hu ZD, He W, Zheng G (2019) Analysis of graphene-based multilayer comb-like absorption enhancement system based on multiple waveguide theory. IEEE Photon Technol Lett 31(7):561–564

    Article  CAS  Google Scholar 

  21. Sreekanth KV, Alapan Y, ElKabbash M, Ilker E, Hinczewski M, Gurkan UA, De Luca A, Strangi G (2016) Extreme sensitivity biosensing platform based on hyperbolic metamaterials. Nat Mater 15(6):621–627

    Article  CAS  PubMed Central  Google Scholar 

  22. Takayama O, Sukham J, Malureanu R, Lavrinenko AV, Puentes G (2018) Photonic spin hall effect in hyperbolic metamaterials at visible wavelengths. Opt Lett 43(19):4602–4605

    Article  CAS  Google Scholar 

  23. Sohr P, Wei D, Tomasulo S, Yakes MK, Law S (2018) Simultaneous large mode index and high quality factor in infrared hyperbolic metamaterials. ACS Photonics 5(10):4003–4008

    Article  CAS  Google Scholar 

  24. Mahmoodi M, Tavassoli SH, Takayama O, Sukham J, Malureanu R, Lavrinenko AV (2019) Existence conditions of high-k modes in finite hyperbolic metamaterials. Laser Photonics Rev 13(3):1800253

    Article  CAS  Google Scholar 

  25. High AA, Devlin RC, Dibos A, Polking M, Wild DS, Perczel J, De Leon NP, Lukin MD, Park H (2015) Visible-frequency hyperbolic metasurface. Nature 522(7555):192–196

    Article  CAS  Google Scholar 

  26. Smalley JST, Vallini F, Montoya SA, Ferrai L, Shahin S, Riley CT, Kanté B, Fullerton EE, Liu Z, Fainman Y (2017) Luminescent hyperbolic metasurface. Nat Commun 8:13793

    Article  CAS  PubMed Central  Google Scholar 

  27. Takayama O, Shkondin E, Bogdanov A, Aryaee Panah ME, Golenitskii K, Dmitriev PA, Repän T, Malreanu M, Belov P, Jensen F, Lavrinenko AV (2017) Midinfrared surface waves on a high aspect ratio nanotrench platform. ACS Photonics 4(11):2899–2907

    Article  CAS  Google Scholar 

  28. Shkondin E, Repän T, Aryaee Panah ME, Lavrinenko AV, Takayama O (2018) High aspect RAtio plasmonic nanotrench structures with large active surface area for label-free mid-infrared molecular absorption sensing. ACS Appl Nano Mater 1(3):1212–1218

    Article  CAS  Google Scholar 

  29. Takayama O, Dmitriev P, Shkondin E, Yermakov O, Shkondin ME, Yermakov O, Panah MEA, Golenitskii K, Jensen F, Bogdanov A, Lavrinenko AV (2018) Experimental observation of Dyakonov Plasmons. Semiconductors 52(4):442–446

    Article  CAS  Google Scholar 

  30. Wang X, Chen C, Pan L, Wang J (2016) A graphene-based Fabry-Pérot spectrometer in mid-infrared region. Sci Rep 6:32616

    Article  CAS  PubMed Central  Google Scholar 

  31. Christensen J, Manjavacas A, Thongrattanasiri S (2011) Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons. ACS Nano 6(1):431–440

    Article  CAS  Google Scholar 

  32. Bao Z, Wang J, Hu ZD, Balmakou A, Khakhomov S, Tang Y, Zhang C (2019) Coordinated multi-band angle insensitive selection absorber based on graphene metamaterials. Opt Express 27(22):31435–31445

    Article  CAS  Google Scholar 

  33. Choy TC (2015) Effective medium theory: principles and applications, vol 165. Oxford University Press

  34. Wood B, Pendry JB, Tsai DP (2006) Directed subwavelength imaging using a layered metal-dielectric system. Phys Rev B 74(11):115116

    Article  CAS  Google Scholar 

  35. He W, Feng Y, Hu ZD, Balmakou A, Khakhomov S, Deng Q, Wang J (2020) Sensors with multifold nanorod metasurfaces array based on hyperbolic metamaterials. IEEE Sensors J 20(4):1801–1806

    Article  CAS  Google Scholar 

  36. Hanson GW (2008) Dyadic Green’s functions, and guided surface waves for a surface conductivity model of graphene. J Appl Phys 103(6):064302

    Article  CAS  Google Scholar 

  37. Liu Y, Liu Y, Kim J (2010) Characteristics of plasmonic Bragg reflectors with insulator width modulated in sawtooth profiles. Opt Express 18(11):11589–11598

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported in part by the National Natural Science Foundation of China (11504139, 11504140, 11811530052), the Intergovernmental Science and Technology Regular Meeting Exchange Project of the Ministry of Science and Technology of China (CB02-20), China Postdoctoral Science Foundation (2017M611693, 2018T110440), the Grant of State Committee for Science and Technology of Belarus (F19KITG-017), the Project of State Key Laboratory of solid microstructure physics of Nanjing University (Grant No. M32056), the Nature Science Foundation of Xuzhou University of Technology (No. XKY2018122), Dongdong Liu is supported by Jiangsu Qinglan Project.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jicheng Wang or Tian Sang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original version of this article was revised: the image of Figure 7 is wrong and the same as Figure 8.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, Y., Hu, ZD., Balmakou, A. et al. Perfect Narrowband Absorber Based on Patterned Graphene-Silica Multilayer Hyperbolic Metamaterials. Plasmonics 15, 1869–1874 (2020). https://doi.org/10.1007/s11468-020-01202-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-020-01202-x

Keywords

Navigation