Skip to main content
Log in

Designing Broadband Nanoimaging with Anomalous Hyperbolic Dispersion

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

A novel strategy to broadband nanoimaging of microworld in the near field is reported by using a folded-geometry transformation. This approach relies exclusively on hyperbolic metamaterials with engineered anomalous hyperbolic dispersion. The restriction on the signs of gradient in the dispersion enables invariable propagation angle of hyperbolic polaritons at different wavelengths, which could be utilized to dramatically broaden the bandwidth. Interestingly, a pseudo-broadband nanoimaging based on hyperbolic metamaterial consisting of alternating metal (e.g. Ag) and plasmonic nanocomposite (e.g. Au-Al2O3) layers is demonstrated. Such strategy of transformation optics-based broadband nanoimaging allows for a new class of robustly manufacturable nanophotonic systems, although additional gain-assisted compensation is needed to improve the performance of nanoimaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The data and material used in this work is available from the corresponding author upon reasonable request.

Code Availability

The code used during the current study is available from the corresponding author on reasonable request.

References

  1. Pendry JB (2000) Phys Rev Lett 85:3966–3969

    Article  CAS  Google Scholar 

  2. Fang N, Lee H, Sun C, Zhang X (2005) Science 308:534–537

    Article  CAS  Google Scholar 

  3. Taubner T, Korobkin D, Urzhumov Y, Shvets G, Hillenbrand R (2006) Science 313:1595

    Article  CAS  Google Scholar 

  4. Zhang X, Liu Z (2008) Nat Mater 7:435–441

    Article  CAS  Google Scholar 

  5. Liu Z, Durant S, Lee H, Pikus Y, Fang N, Xiong Y, Sun C, Zhang X (2007) Nano Lett 2:403–408

    Article  Google Scholar 

  6. Jacob Z, Alekseyev LV, Narimanov EE (2006) Opt Express 14:8247–8256

    Article  Google Scholar 

  7. Liu Z, Lee H, Xiong Y, Sun C, Zhang X (2007) Science 315:1686

    Article  CAS  Google Scholar 

  8. Smolyaninov II, Hung YJ, Davis CC (2007) Science 315:1699–1701

    Article  CAS  Google Scholar 

  9. Lu D, Liu Z (2012) Nat Commun 3:1205

    Article  Google Scholar 

  10. Rho J, Ye Z, Xiong Y, Yin X, Liu Z, Choi H, Bartal G, Zhang X (2010) Nat Commun 1:143

    Article  Google Scholar 

  11. Shen L, Wang H, Li R, Xu Z, Chen H (2017) Sci Rep 7(1):1–8

    Article  Google Scholar 

  12. Repän T, Lavrinenko AV, Zhukovsky SV (2015) Opt Express 23:25350–25364

    Article  Google Scholar 

  13. Casse BDF, Lu WT, Huang YJ, Gultepe E, Menon L, Sridhar S (2010) Appl Phys Lett 96:023114

    Article  Google Scholar 

  14. Ishii S, Kildishev AV, Narimanov EE, Shalaev VM, Drachev VP (2013) Laser Photonics Rev., 7, 265–271

  15. Caldwell JD, Kretnin AV, Chen Y, Giannini V, Fogler MM, Francescato Y, Ellis CT, Tischler JG, Woods CR, Giles AJ, Hong M, Watanabe K, Taniguchi T, Maier SA, Novoselov KS (2014) Nat Commun 5:5221

    Article  CAS  Google Scholar 

  16. Li P, Lewin M, Kretinin AV, Caldwell JD, Novoselov KS, Taniguchi T, Watanabe K, Gaussmann F, Taubner T (2015) Nat Commun 6:7507

    Article  CAS  Google Scholar 

  17. Dai S, Ma Q, Andersen T, Mcleod AS, Fei Z, Liu MK, Wagner M, Watanabe K, Taniguchi T, Thiemens M, Keilmann F, Jarillo-Herrero P, Fogler MM, Basov DN (2015) Nat Commun 6:6963

    Article  CAS  Google Scholar 

  18. Shen L, Lin X, Shalaginov M, Low T, Zhang X, Zhang B, Chen H (2020) Appl Phys Rev 7:021403

    Article  CAS  Google Scholar 

  19. Leonhardt U, Philbin TG (2008) New J Phys 8:247

    Article  Google Scholar 

  20. Milton GW, Nicorovici NAP, McPhedranm RC, Cherednichenko K, Jacob Z (2008) New J Phys 10: 115021

  21. Shen L, Prokopeva L, Chen H, Kildishev AV (2018) Nanophotonics 7:479–487

    Article  CAS  Google Scholar 

  22. Musa MY, Shen L, Wang Z, Xu S, Yin W, Chen H (2019) IEEE Tran Antennas Propag 67: 6515–6522

  23. Kildishev AV, Cai W, Chettiar UK, Shalaev VM (2008) New J Phys 10:115029

    Article  Google Scholar 

  24. Li P, Taubner T (2012) ACS Nano 6:10107

    Article  CAS  Google Scholar 

  25. Kehr SC, Liu YM, Martin LW, Yu P, Gajek M, Yang SY, Yang CH, Wenzel MT, Jacob R, von Ribbeck HG, Helm M, Zhang X, Eng LM, Ramesh R (2011) Nat Commun 2:249

    Article  CAS  Google Scholar 

  26. Li P, Taubner T (2012) Opt Express 20:11787–11795

    Article  Google Scholar 

  27. Forouzmand A, Bernety HM, Yakovlev AB (2015) Phys Rev B 92:085402

    Article  Google Scholar 

  28. Yang X, Liu Y, Ma J, Cui J, Xing H, Wang W, Wang C, Luo X (2008) Opt Express 16:19686

    Article  CAS  Google Scholar 

  29. Bruggeman DAG (1935) Ann Phys 24:636

    Article  CAS  Google Scholar 

  30. Kubo S, Diaz A, Tang Y, Mayer TS, Khoo IC, Mallouk TE (2007) Nano Lett 7:3418–3423

    Article  CAS  Google Scholar 

  31. Khoo IC, Werner DH, Liang X, Diaz A, Weiner B (2006) Opt Lett 31(17):2592–2594

    Article  CAS  Google Scholar 

  32. Shalaev VM (2000) Nonlinear optics of random media: fractal composites and metal dielectric films. Springer, Berlin

    Book  Google Scholar 

  33. Johnson PB, Christy RW (1972) Phys Rev B 6:4370–4379

    Article  CAS  Google Scholar 

  34. Luo YL, Shen L, Chee KW (2019) Plasmonics 14:1473–1478

    Article  Google Scholar 

  35. Harris SE (1997) Phys Today 50:36–42

    Article  CAS  Google Scholar 

  36. Kastel J, Fleischhauer M, Yelin SF, Walsworth RL (2007) Phys Rev Lett 99:073602

    Article  Google Scholar 

  37. Hedayati MK, Javaherirahim M, Mozooni B, Abdelaziz R, Tavassolizadeh A, Chakravadhanula VSK, Zaporojtchenko V, Strunkus T, Faupel F, Elbahri M (2011) Adv Mater 23:5410–5414

    Article  CAS  Google Scholar 

  38. Cai W, Chettiar UK, Kildishev AV, Shalaev VM (2008) Nat Photonics 1:224–227

    Article  Google Scholar 

Download references

Funding

The work was sponsored by the National Natural Science Foundation of China (NSFC) under Grant No. 61905216 and No. 51805469, China Postdoctoral Science Foundation (2018M632462).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Idea was carried out by Lian Shen. Analysis and simulation was carried out by Wei Yang. All authors commented on previous versions of the manuscript and read and approved the final manuscript.

Corresponding author

Correspondence to Lian Shen.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, W., Shen, L. Designing Broadband Nanoimaging with Anomalous Hyperbolic Dispersion. Plasmonics 16, 1791–1797 (2021). https://doi.org/10.1007/s11468-021-01387-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-021-01387-9

Keywords

Navigation