Skip to main content

Advertisement

Log in

High-Resolution Two-Dimensional Atomic Localization Via Tunable Surface Plasmon Polaritons

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

The two-dimensional (2D) atomic localization is theoretically investigated via tunable surface plasmon polaritons (SPPs), generated on the metal (Ag) surface coupled to a quantum coherent three-level \(\lambda\)-type medium (\(^{87}\)Rb) embedded as a dielectric host. Such a useful scheme for highly precise atomic localization is reported by using the absorption spectrum of SPPs. Owing to space-dependent light–matter interaction, the sharp localized peaks are observed in a single wavelength domain of 2D space with maximum probability. By properly varying the system parameters, the precision and numbers of the localized peaks are controlled. Consequently, highly efficient and high-resolution atomic localization can be achieved in a region smaller than \(\lambda /20\times \lambda /20\). The spatial resolution of atomic localization is greatly improved as compared to the previously studied cases. These results may have potential useful applications in the fields of quantum nanoplasmonics, nanolithography, and nanophotonics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

No data were used to support this study.

Code Availability

The results are based on Mathematica simulation coding. As such code availability is not applicable. However, the major code can be made available on reasonable request to corresponding author.

References

  1. Tame MS, McEnery KR, Ozdemir K, Lee J, Maier SA, Kim MS (2013) Quantum plasmonics. Nat Phys 9(6):329–340

    Article  CAS  Google Scholar 

  2. Barnes WL (2006) Surface plasmon-polariton length scales: a route to sub-wavelength optics. J Opt A Pure Appl Opt 8(4):S87

    Article  Google Scholar 

  3. Zhang J, Zhang L, Xu W (2012) Surface plasmon polaritons: physics and applications. J Phys D Appl Phys 45(11):113001

    Article  CAS  Google Scholar 

  4. Hutter E, Fendler JH (2004) Exploitation of localized surface plasmon resonance. Adv Mater 16(19):1685–1706

    Article  CAS  Google Scholar 

  5. Lee HS, Awada C, Boutami S, Charra F, Douillard L, de Lamaestre RE (2012) Loss mechanisms of surface plasmon polaritons propagating on a smooth polycrystalline Cu surface. Opt Express 20(8):8974–8981

    Article  CAS  PubMed  Google Scholar 

  6. Liedberg B, Nylander C, Lunstrm I (1983) Surface plasmon resonance for gas detection and biosensing. Sens Actuators 4:299–304

    Article  CAS  Google Scholar 

  7. Cai W, Genov DA, Shalaev VM (2005) Superlens based on metal-dielectric composites. Phys Rev B 72(19):193101

    Article  CAS  Google Scholar 

  8. Kurokawa Y, Miyazaki HT (2007) Metal-insulator-metal plasmon nanocavities: Analysis of optical properties. Phys Rev B 75(3):035411

    Article  CAS  Google Scholar 

  9. Temnov VV (2012) Ultrafast acousto-magneto-plasmonics. Nat Photonics 6(11):728

    Article  CAS  Google Scholar 

  10. Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424(6950):824–830

    Article  CAS  PubMed  Google Scholar 

  11. Kim SH, Lee CM, Ahn KJ, Yee KJ (2013) Coupling of air/metal and substrate/metal surface plasmon polaritons in Au slit arrays fabricated on quartz substrate. Opt Express 21(19):21871–21878

    Article  CAS  PubMed  Google Scholar 

  12. Fischer GL, Boyd RW, Gehr RJ, Jenekhe SA, Osaheni JA, Sipe JE, Weller-Brophy LA (1995) Enhanced nonlinear optical response of composite materials. Phys Rev Lett 74(10):1871

    Article  CAS  PubMed  Google Scholar 

  13. Kurihara K, Rockstuhl C, Nakano T, Arai T, Tominaga J (2005) The size control of silver nano-particles in SiO2 matrix film. Nanotechnology 16(9):1565

    Article  CAS  Google Scholar 

  14. Evseev DA, Sementsov DI (2015) Plasmon polaritons at the boundary between a dielectric and a nanocomposite with metallic inclusions. Phys Met Metallogr 116(8):745

    Article  Google Scholar 

  15. Scholl JA, Koh AL, Dionne JA (2012) Quantum plasmon resonances of individual metallic nanoparticles. Nature 483(7390):421–427

    Article  CAS  PubMed  Google Scholar 

  16. Ali N, Bi G, Khesro A, Khan M, Lang J, Samreen A, Wu H (2018) Hybrid AgNPs/MEH-PPV nanocomplexes with enhanced optical absorption and photoluminescence properties. New J Chem 42(23):18991–18999

    Article  CAS  Google Scholar 

  17. Esteban R, Borisov AG, Nordlander P, Aizpurua J (2012) Bridging quantum and classical plasmonics with a quantum-corrected model. Nat Commun 3(1):1–9

    Article  CAS  Google Scholar 

  18. Gramotnev DK, Bozhevolnyi SI (2010) Plasmonics beyond the diffraction limit. Nat Photonics 4(2):83–91

    Article  CAS  Google Scholar 

  19. Yu N et al (2011) Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334(6054):333–337

    Article  CAS  PubMed  Google Scholar 

  20. Genevet P, Yu N, Aieta F, Lin J, Kats MA, Blanchard R, Capasso F (2012) Ultra-thin plasmonic optical vortex plate based on phase discontinuities. Appl Phys Lett 100(1):013101

    Article  CAS  Google Scholar 

  21. Dorfman KE, Jha PK, Voronine DV, Genevet P, Capasso F, Scully MO (2013) Quantum-coherence-enhanced surface plasmon amplification by stimulated emission of radiation. Phys Rev Lett 111(4):043601

    Article  PubMed  CAS  Google Scholar 

  22. Jha PK, Yin X, Zhang X (2013) Quantum coherence-assisted propagation of surface plasmon polaritons. Appl Phys Lett 102(9):091111

    Article  CAS  Google Scholar 

  23. Tan C, Huang G (2015) Surface polaritons in a negative-index metamaterial with active Raman gain. Phys Rev A 91(2):023803

    Article  CAS  Google Scholar 

  24. Khan N, Bacha BA, Iqbal A, Rahman AU, Afaq A (2017) Gain-assisted superluminal propagation and rotary drag of photon and surface plasmon polaritons. Phys Rev A 96(1):013848

    Article  Google Scholar 

  25. Bacha BA, Khan T, Khan N, Ullah SA, Jabar MA, Rahman AU (2018) The hybrid mode propagation of surface plasmon polaritons at the interface of graphene and a chiral medium. Eur Phys J Plus 133(12):509

    Article  CAS  Google Scholar 

  26. Shah SA, Ullah S, Idrees M, Bacha BA, Ali A, Ullah A (2019) Surface plasmon induced atom localization in a tripod-type four level atomic system. Phys Scr 94(3):035401

    Article  CAS  Google Scholar 

  27. Gorshkov AV, Jiang L, Greiner M, Zoller P, Lukin MD (2008) Coherent quantum optical control with subwavelength resolution. Phys Rev Lett 100(9):093005

    Article  PubMed  CAS  Google Scholar 

  28. Wu Y, Cote R (2002) Bistability and quantum fluctuations in coherent photoassociation of a Bose-Einstein condensate. Phys Rev A 65(5):053603

    Article  CAS  Google Scholar 

  29. Johnson KS, Thywissen JH, Dekker NH, Berggren KK, Chu AP, Younkin R, Prentiss M (1998) Localization of metastable atom beams with optical standing waves: nanolithography at the Heisenberg limit. Science 280(5369):1583–1586

    Article  CAS  PubMed  Google Scholar 

  30. Boto AN, Kok P, Abrams DS, Braunstein SL, Williams CP, Dowling JP (2000) Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit. Phys Rev Lett 85(13):2733

    Article  CAS  PubMed  Google Scholar 

  31. Metcalf H, van der Straten P (1994) Cooling and trapping of neutral atoms. Phys Rep 244(4–5):203–286

    Article  CAS  Google Scholar 

  32. Phillips WD (1998) Nobel Lecture: Laser cooling and trapping of neutral atoms. Rev Mod Phys 70(3):721

    Article  CAS  Google Scholar 

  33. Holland M, Marksteiner S, Marte P, Zoller P (1996) Measurement induced localization from spontaneous decay. Phys Rev Lett 76(20):3683

    Article  CAS  PubMed  Google Scholar 

  34. Idrees M, Bacha BA, Javed M, Ullah SA (2017) Precise position measurement of an atom using superposition of two standing wave fields. Laser Phys 27(4):045202

    Article  CAS  Google Scholar 

  35. Wan RG, Zhang TY, Kou J (2013) Two-dimensional sub-half-wavelength atom localization via phase control of absorption and gain. Phys Rev A 87(4):043816

    Article  CAS  Google Scholar 

  36. Ding C, Li J, Yang X, Zhang D, Xiong H (2011) Proposal for efficient two-dimensional atom localization using probe absorption in a microwave-driven four-level atomic system. Phys Rev A 84(4):043840

    Article  CAS  Google Scholar 

  37. Paspalakis E, Knight PL (2001) Localizing an atom via quantum interference. Phys Rev A 63(6):065802

    Article  CAS  Google Scholar 

  38. Liu C, Gong S, Cheng D, Fan X, Xu Z (2006) Atom localization via interference of dark resonances. Phys Rev A 73(2):025801

    Article  CAS  Google Scholar 

  39. Wu J, Wu B, Mao J (2018) Efficient atom localization via probe absorption in an inverted-Y atomic system. J Mod Opt 65(10):1219–1225

    Article  Google Scholar 

  40. Hong Y, Wang Z, Yu B (2019) High-precision three-dimensional atom localization via Kerr Nonlinearity. J Opt Soc Am B 36(3):746-751 

    Article  CAS  Google Scholar 

  41. Ali K, Ullah M, Bacha BA, Jabar MA (2019) Complex conductivity-dependent two-dimensional atom microscopy. Eur Phys J Plus 134(12):618

    Article  CAS  Google Scholar 

  42. Ali S, Idrees M, Bacha BA, Ullah A, Haneef M (2020) Efficient two-dimensional atom localization in a five-level conductive chiral atomic medium via birefringence beam absorption spectrum. Commun Theor Phys 73(1):015102

    Article  CAS  Google Scholar 

  43. Idrees M, Kalsoom H, Bacha BA, Ullah A, Wang LG (2021) Spatial dependent probe transmission based high-precision two-dimensional atomic localization. Commun Theor Phys. https://doi.org/10.1088/1572-9494/abe229

  44. Sargent M, Meystre P (2007) Elements of Quantum Optics (Springer-Verlag)

  45. Metcalf HJ, van der Straten P (2003) Laser cooling and trapping of atoms. J Opt Soc Am B 20(5):887-908

  46. Iqbal H, Idrees M, Javed M, Bacha BA, Khan S, Ullah SA (2017) Goos–Hänchen Shift from Cold and Hot Atomic Media Using Kerr Nonlinearity. J Russ Laser Res 38(5):426-436

  47. Scully MO, Zubairy MS (1997) Quantum optics. Cambridge University press, Cambridge, CB2 2RU, UK

  48. Idrees M, Kalsoom H, Bacha BA, Ullah A, Wang LG (2020) Continuum and undefine hole burning regions via pulse propagation in a four-level Doppler broadened atomic system. Eur Phys J Plus 135(9):1-11

  49. Mirlin DN, Lagois J, Fischer B, Zhizhin GN, Moskalova MA, Shomina EV, Stegeman G (1982) Surface Polaritons Electromagnetic Waves at Surfaces and Interfaces. North-Holland, Amsterdam

  50. Jiang X, Li J, Sun X (2017) Two-dimensional atom localization based on coherent field controlling in a five-level M-type atomic system. Opt Express 25(25):31678–31687

  51. Zhang D, Yu R, Sun Z, Ding C, Zubairy MS (2017) High precision three-dimensional atom localization via phase-sensitive absorption spectra in a four-level atomic system. J Phys B At Mol Phys 51(2):025501

  52. Idrees M, Ullah M, Bacha BA, Ullah A, Wang LG (2020) High resolution two-dimensional atomic microscopy in a tripod-type four-level atomic medium via standing wave fields. Laser Phys 30(11):115402

Download references

Acknowledgements

This work was supported by Zhejiang Provincial Natural Science Foundation of China (Grant No. LD18A040001), National Key Research and Development Program of China (No. 2017YFA0304202), and National Natural Science Foundation of China (Grant No. 11974309).

Author information

Authors and Affiliations

Authors

Contributions

Muhammad Idrees performed conceptualization, writing, and original draft preparation. Muhib Ullah contributed to resources, data curation, reviewing and editing. Bakth Amin Bacha performed methodology and investigation. Arif Ullah contributed to visualization and software. Li-Gang Wang helped in project administration and supervision.

Corresponding author

Correspondence to Li-Gang Wang.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Idrees, M., Ullah, M., Bacha, B.A. et al. High-Resolution Two-Dimensional Atomic Localization Via Tunable Surface Plasmon Polaritons. Plasmonics 16, 1773–1780 (2021). https://doi.org/10.1007/s11468-021-01404-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-021-01404-x

Keywords

Navigation