Skip to main content

Advertisement

Log in

Novel Nanomaterials for Clinical Neuroscience

  • Invited Review
  • Published:
Journal of Neuroimmune Pharmacology Aims and scope Submit manuscript

Abstract

Neurodegenerative disorders including Alzheimer’s and Parkinson’s diseases, amyotrophic lateral sclerosis, and stroke are rapidly increasing as population ages. The field of nanomedicine is rapidly expanding and promises revolutionary advances to the diagnosis and treatment of devastating human diseases. This paper provides an overview of novel nanomaterials that have potential to improve diagnosis and therapy of neurodegenerative disorders. Examples include liposomes, nanoparticles, polymeric micelles, block ionomer complexes, nanogels, and dendrimers that have been tested clinically or in experimental models for delivery of drugs, genes, and imaging agents. More recently discovered nanotubes and nanofibers are evaluated as promising scaffolds for neuroregeneration. Novel experimental neuroprotective strategies also include nanomaterials, such as fullerenes, which have antioxidant properties to eliminate reactive oxygen species in the brain to mitigate oxidative stress. Novel technologies to enable these materials to cross the blood brain barrier will allow efficient systemic delivery of therapeutic and diagnostic agents to the brain. Furthermore, by combining such nanomaterials with cell-based delivery strategies, the outcomes of neurodegenerative disorders can be greatly improved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abidian MR, Kim, DH, Martin DC (2006) Conducting-polymer nanotubes for controlled drug release. Adv Mater 18:405–409

    CAS  Google Scholar 

  • Aliabadi HM, Lavasanifar A (2006) Polymeric micelles for drug delivery. Expert Opin Drug Deliv 3:139–162

    PubMed  CAS  Google Scholar 

  • Allen TM, Cullis PR (2004) Drug delivery systems: entering the mainstream. Science 303:1818–1822

    PubMed  CAS  Google Scholar 

  • Armstrong A, Brewer J, Newman C, Alakhov V, Pietrzynski G, Campbell S, Corrie P, Ranson M, Valle JW (2006) SP1049C as first-line therapy in advanced (inoperable or metastatic) adenocarcinoma of the oesophagus: a phase II window study. J Clin Oncol (Meeting Abstracts) 24:4080

    Google Scholar 

  • Batrakova EV, Han HY, Miller DW, Kabanov AV (1998) Effects of pluronic P85 unimers and micelles on drug permeability in polarized BBMEC and Caco-2 cells. Pharm Res 15:1525–1532

    PubMed  CAS  Google Scholar 

  • Batrakova EV, Miller DW, Li S, Alakhov VY, Kabanov AV, Elmquist WF (2001) Pluronic P85 enhances the delivery of digoxin to the brain: in vitro and in vivo studies. J Pharmacol Exp Ther 296:551–557

    PubMed  CAS  Google Scholar 

  • Batrakova EV, Vinogradov SV, Robinson SM, Niehoff ML, Banks WA, Kabanov AV (2005) Polypeptide point modifications with fatty acid and amphiphilic block copolymers for enhanced brain delivery. Bioconjug Chem 16:793–802

    PubMed  CAS  Google Scholar 

  • Batrakova EV, Li S, Reynolds AD, Mosley RL, Bronich TK, Kabanov AV, Gendelman HE (2007) A macrophage-nanozyme delivery system for Parkinson’s disease. Bioconjug Chem 18(5):1498–1506

    PubMed  CAS  Google Scholar 

  • Baxendale M (2003) Biomolecular applications of carbon nanotubes. IEE Proc Nanobiotechnol 150:3–8

    PubMed  CAS  Google Scholar 

  • Blass J (2003) Cerebrometabolic abnormalities in Alzheimer’s disease. Neurol Res 25:556–566

    PubMed  CAS  Google Scholar 

  • Bronich TK, Kabanov AV, Kabanov VA, Yu K, Eisenberg A (1997) Soluble complexes from poly(ethylene oxide)-block-polymethacrylate anions and N-alkylpyridinium cations. Macromolecules 30:3519–3525

    CAS  Google Scholar 

  • Bronich TK, Cherry T, Vinogradov SV, Eisenberg A, Kabanov VA, Kabanov AV (1998) Self-assmbly in mixtures of poly(ethylene oxide)-graft-poly(ethyleneimine) and alkyl sulfates. Langmuir 14:6101–6106

    CAS  Google Scholar 

  • Bronich TK, Nehls A, Eisenberg A, Kabanov VA, Kabanov AV (1999) Novel drug delivery systems based on the complexes of block ionomers and surfactants of opposite charge. Colloids Surf B 16:243–251

    CAS  Google Scholar 

  • Bronich TK, Popov AM, Eisenberg A, Kabanov VA, Kabanov AV (2000) Effects of block length and structure of surfactant on self-assembly and solution behavior of block ionomer complexes. Langmuir 16:481–489

    CAS  Google Scholar 

  • Buyukserin F, Kang M, Martin CR (2007) Plasma-etched nanopore polymer films and their use as templates to prepare “nano test tubes”. Small 3:106–110

    PubMed  CAS  Google Scholar 

  • Chekhonin V, Zhirkov YA, Gurina OI, Ryabukhin IA, Lebedev SV, Kashparov IA, Dmitriyeva TB (2005) PEGylated immunoliposomes directed against brain astrocytes. Drug Deliv 12:1–6

    PubMed  CAS  Google Scholar 

  • Cui Z, Lockman PR, Atwood CS, Hsu CH, Gupte A, Allen DD, Mumper RJ (2005) Novel d-penicillamine carrying nanoparticles for metal chelation therapy in Alzheimer’s and other CNS diseases. Eur J Pharm Biopharm 59:263–272

    PubMed  CAS  Google Scholar 

  • D’Emanuele A, Attwood D (2005) Dendrimer–drug interactions. Adv Drug Deliv Rev 57:2147–2162

    PubMed  CAS  Google Scholar 

  • Daleke DL, Hong K, Papahadjopoulos D (1990) Endocytosis of liposomes by macrophages: binding, acidification and leakage of liposomes monitored by a new fluorescence assay. Biochim Biophys Acta 1024:352–366

    PubMed  CAS  Google Scholar 

  • Danson S, Ferry D, Alakhov V, Margison J, Kerr D, Jowle D, Brampton M, Halbert G, Ranson M (2004) Phase I dose escalation and pharmacokinetic study of pluronic polymer-bound doxorubicin (SP1049C) in patients with advanced cancer. Br J Cancer 90:2085–2091

    PubMed  CAS  Google Scholar 

  • de Boer AG, Gaillard PJ (2007) Drug targeting to the brain. Annu Rev Pharmacol Toxicol 47:323–355

    PubMed  Google Scholar 

  • Ding JJ, Guo CY, Cai QL, Lin YH, Wang H (2005) In vivo expression of green fluorescent protein gene and immunogenicity of ES312 vaccine both mediated by starburst polyamidoamine dendrimers. Zhongguo Yi Xue Ke Xue Yuan Xue Bao 27:499–503

    PubMed  CAS  Google Scholar 

  • Dou H, Destache CJ, Morehead JR, Mosley RL, Boska MD, Kingsley J, Gorantla S, Poluektova L, Nelson JA, Chaubal M, Werling J, Kipp J, Rabinow BE, Gendelman HE (2006) Development of a macrophage-based nanoparticle platform for antiretroviral drug delivery. Blood 108:2827–2835

    PubMed  CAS  Google Scholar 

  • Dou H, Morehead J, Destache CJ, Kingsley JD, Shlyakhtenko L, Zhou Y, Chaubal M, Werling J, Kipp J, Rabinow BE, Gendelman HE (2007) Laboratory investigations for the morphologic, pharmacokinetic, and anti-retroviral properties of indinavir nanoparticles in human monocyte-derived macrophages. Virology 358:148–158

    PubMed  CAS  Google Scholar 

  • Dugan LL, Turetsky DM, Du C, Lobner D, Wheeler M, Almli CR, Shen CK, Luh TY, Choi DW, Lin TS (1997) Carboxyfullerenes as neuroprotective agents. Proc Natl Acad Sci USA 94:9434–9439

    PubMed  CAS  Google Scholar 

  • Dugan L, Lovett EG, Quick KL, Lotharius J, Lin TT, O, Malley KL (2001) Fullerene-based antioxidants and neurodegenerative disorders. Parkinsonism Relat Disord 7:243–246

    PubMed  Google Scholar 

  • Ellis-Behnke RG, Liang YX, You SW, Tay DK, Zhang S, So KF, Schneider GE (2006) Nano neuro knitting: peptide nanofiber scaffold for brain repair and axon regeneration with functional return of vision. Proc Natl Acad Sci USA 103:5054–5059

    PubMed  CAS  Google Scholar 

  • Fenoglio I, Tomatis M, Lison D, Muller J, Fonseca A, Nagy JB, Fubini B (2006) Reactivity of carbon nanotubes: Free radical generation or scavenging activity. Free Radic Biol Med 40:1227–1233

    PubMed  CAS  Google Scholar 

  • Feynman RP (1960) There’s plenty of room at the bottom. Eng Sci 23:22–36

    Google Scholar 

  • Fortin D (2003) Altering the properties of the blood–brain barrier: disruption and permeabilization. Prog Drug Res 61:125–154

    PubMed  CAS  Google Scholar 

  • Gabizon AA, Shmeeda H, Zalipsky S (2006) Pros and cons of the liposome platform in cancer drug targeting. J Liposome Res 16:175–183

    PubMed  CAS  Google Scholar 

  • Gorantla S, Dou H, Boska M, Destache CJ, Nelson J, Poluektova L, Rabinow BE, Gendelman HE, Mosley RL (2006) Quantitative magnetic resonance and SPECT imaging for macrophage tissue migration and nanoformulated drug delivery. J Leukoc Biol 80:1165–1174

    PubMed  CAS  Google Scholar 

  • Gradishar WJ (2006) Albumin-bound paclitaxel: a next-generation taxane. Expert Opin Pharmacother 7:1041–1053

    PubMed  CAS  Google Scholar 

  • Greiner A, Wendorff JH, Yarin AL, Zussman E (2006) Biohybrid nanosystems with polymer nanofibers and nanotubes. Appl Microbiol Biotechnol 71:387–393

    PubMed  CAS  Google Scholar 

  • Haensler J, Szoka FC (1993) Polyamidoamine cascade polymers mediate efficient transfection of cells in culture. Bioconj Chem 4:372–379

    CAS  Google Scholar 

  • Hahn U, Gorka M, Vogtle F, Vicinelli V, Ceroni P, Maestri M, Balzani V (2002) Light-harvesting dendrimers: efficient intra- and intermolecular energy-transfer processes in a species containing 65 chromophoric groups of four different types. Angew Chem Int Ed Engl 41:3595–3598, 3514

    PubMed  CAS  Google Scholar 

  • Harada A, Kataoka K (1999a) Novel polyion complex micelles entrapping enzyme molecules in the core. 2. Characterization of the micelles prepared at nonstoichiometric mixing ratios. Langmuir 15:4208–4212

    CAS  Google Scholar 

  • Harada A, Kataoka K (1999b) Chain length recognition: core-shell supramolecular assembly from oppositely charged block copolymers. Science 283:65–67

    PubMed  CAS  Google Scholar 

  • Harada-Shiba M, Yamauchi K, Harada A, Takamisawa I, Shimokado K, Kataoka K (2002) Polyion complex micelles as vectors in gene therapy-pharmacokinetics and in vivo gene transfer. Gene Ther 9:407–414

    PubMed  CAS  Google Scholar 

  • Hartgerink J, Granja JR, Milligan RA, Ghadiri MR (1996) Self-assembling peptide nanotubes. J Am Chem Soc 118:43–50

    CAS  Google Scholar 

  • Hirsch A (2003) Dendrimeric fullerene derivatives, process for their preparation, and use as neuroprotectants. In: Siemens Axiva GmbH KG (DE), USA

  • Hirsch A, Brettreich M, Wudl F (2005) Fullerenes: chemistry and reactions. In: Wiley-VCH Verlag GmbH KGaA

  • Hou S, Wang J, Martin CR (2005a) Template-synthesized DNA nanotubes. J Am Chem Soc 127:8587–8587

    Google Scholar 

  • Hou S, Wang J, Martin CR (2005b) Template-synthesized protein nanotubes. Nano Lett 5:231–234

    PubMed  CAS  Google Scholar 

  • Huang RQ, Qu YH, Ke WL, Zhu JH, Pei YY, Jiang C (2007) Efficient gene delivery targeted to the brain using a transferrin-conjugated polyethyleneglycol-modified polyamidoamine dendrimer. Faseb J 21:1117–1125

    PubMed  CAS  Google Scholar 

  • Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    CAS  Google Scholar 

  • Jain S, Mishra V, Singh P, Dubey PK, Saraf DK, Vyas SP (2003) RGD-anchored magnetic liposomes for monocytes/neutrophils-mediated brain targeting. Int J Pharm 261:43–55

    PubMed  CAS  Google Scholar 

  • Jang J, Ko S, Kim Y (2006) Dual-functionalized polymer nanotubes as substrates for molecular-probe and DNA-carrier applications. Adv Funct Mater 16:154–159

    Google Scholar 

  • Jaturanpinyo M, Harada A, Yuan X, Kataoka K (2004) Preparation of bionanoreactor based on core-shell structured polyion complex micelles entrapping trypsin in the core cross-linked with glutaraldehyde. Bioconjug Chem 15:344–348

    PubMed  CAS  Google Scholar 

  • Jean MJF (2003) Dendrimers and other dendritic macromolecules: From building blocks to functional assemblies in nanoscience and nanotechnology. J Polym Sci A Polym Chem 41:3713–3725

    Google Scholar 

  • Jin H, Chen WQ, Tang XW, Chiang LY, Yang CY, Schloss JV, Wu JY (2000) Polyhydroxylated C(60), fullerenols, as glutamate receptor antagonists and neuroprotective agents. J Neurosci Res 62:600–607

    PubMed  CAS  Google Scholar 

  • Junghans M, Loitsch SM, Steiniger SC, Kreuter J, Zimmer A (2005) Cationic lipid-protamine-DNA (LPD) complexes for delivery of antisense c-myc oligonucleotides. Eur J Pharm Biopharm 60:287–294

    PubMed  CAS  Google Scholar 

  • Kabanov AV, Alakhov VY (2002) Pluronic block copolymers in drug delivery: from micellar nanocontainers to biological response modifiers. Crit Rev Ther Drug Carrier Syst 19:1–72

    PubMed  CAS  Google Scholar 

  • Kabanov AV, Gendelman HE (2007) Nanomedicine in the diagnosis and therapy of neurodegenerative disorders. Prog Polym Sci 32:1054–1082

    CAS  PubMed  Google Scholar 

  • Kabanov A, Chekhonin VP, Alakhov VYu, Batrakova EV, Lebedev AS, Melik-Mubarov NS, Arzhakov SA, Levashov AV, Morozov GV, Severin ES et al (1989) The neuroleptic activity of haloperidol increases after its solubilization in surfactant micelles. Micelles as microcontainers for drug targeting. FEBS Lett 258:343–345

    PubMed  CAS  Google Scholar 

  • Kabanov AV, Vinogradov SV, Suzdaltseva YG, Alakhov V (1995) Water-soluble block polycations as carriers for oligonucleotide delivery. Bioconjug Chem 6:639–643

    PubMed  CAS  Google Scholar 

  • Kadiu I, Glanzer JG, Kipnis J, Gendelman HE, Thomas MP (2005) Mononuclear phagocytes in the pathogenesis of neurodegenerative diseases. Neurotox Res 8:25–50

    PubMed  CAS  Google Scholar 

  • Kataoka K, Harada A, Nagasaki Y (2001) Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv Drug Deliv Rev 47:113–131

    PubMed  CAS  Google Scholar 

  • Kim TY, Kim DW, Chung JY, Shin SG, Kim SC, Heo DS, Kim NK, Bang YJ (2004) Phase I and pharmacokinetic study of Genexol-PM, a cremophor-free, polymeric micelle-formulated paclitaxel, in patients with advanced malignancies. Clin Cancer Res 10:3708–3716

    PubMed  CAS  Google Scholar 

  • Kitchens KM, El-Sayed ME, Ghandehari H (2005) Transepithelial and endothelial transport of poly (amidoamine) dendrimers. Adv Drug Deliv Rev 57:2163–2176

    PubMed  CAS  Google Scholar 

  • Kokovay E, Cunningham LA (2005) Bone marrow-derived microglia contribute to the neuroinflammatory response and express iNOS in the MPTP mouse model of Parkinson’s disease. Neurobiol Dis 19:471–478

    PubMed  CAS  Google Scholar 

  • Kreuter J, Ramge P, Petrov V, Hamm S, Gelperina SE, Engelhardt B, Alyautdin R, von Briesen H, Begley DJ (2003) Direct evidence that polysorbate-80-coated poly(butylcyanoacrylate) nanoparticles deliver drugs to the CNS via specific mechanisms requiring prior binding of drug to the nanoparticles. Pharm Res 20:409–416

    PubMed  CAS  Google Scholar 

  • Kroto HW, Heath JR, O, Brien SC, Curl RF, Smalley RE (1985) C60: buckminsterfullerene. Nature 318:162–163

    CAS  Google Scholar 

  • Kurkowska-Jastrzebska I, Wronska A, Kohutnicka M, Czlonkowski A, Czlonkowska A (1999a) MHC class II positive microglia and lymphocytic infiltration are present in the substantia nigra and striatum in mouse model of Parkinson’s disease. Acta Neurobiol Exp (Wars) 59:1–8

    CAS  Google Scholar 

  • Kurkowska-Jastrzebska I, Wronska A, Kohutnicka M, Czlonkowski A, Czlonkowska A (1999b) The inflammatory reaction following 1-methyl-4-phenyl-1,2,3, 6-tetrahydropyridine intoxication in mouse. Exp Neurol 156:50–61

    PubMed  CAS  Google Scholar 

  • Kwon GS (2003) Polymeric micelles for delivery of poorly water-soluble compounds. Crit Rev Ther Drug Carrier Syst 20:357–403

    PubMed  CAS  Google Scholar 

  • Lacerda L, Bianco A, Prato M, Kostarelos K (2006) Carbon nanotubes as nanomedicines: from toxicology to pharmacology. Adv Drug Deliv Rev 58:1460–1470

    PubMed  CAS  Google Scholar 

  • Lawson LJ, Perry VH, Gordon S (1992) Turnover of resident microglia in the normal adult mouse brain. Neuroscience 48:405–415

    PubMed  CAS  Google Scholar 

  • Liang Z, Susha AS, Yu A, Caruso F (2003) Nanotubes prepared by layer-by-layer coating of porous membrane templates. Adv Mater 15:1849–1853

    CAS  Google Scholar 

  • Liu M, Kono K, Frechet JM (2000) Water-soluble dendritic unimolecular micelles: their potential as drug delivery agents. J Control Release 65:121–131

    PubMed  CAS  Google Scholar 

  • Lockman P, Mumper RJ, Khan MA, Allen DD (2002) Nanoparticle technology for drug delivery across the blood brain barrier. Drug Dev Ind Pharm 28:1–13

    PubMed  CAS  Google Scholar 

  • Lovat V, Pantarotto D, Lagostena L, Cacciari B, Grandolfo M, Righi M, Spalluto G, Prato M, Ballerini L (2005) Carbon nanotube substrates boost neuronal electrical signaling. Nano Lett 5:1107–1110

    PubMed  CAS  Google Scholar 

  • Male D, Rezaie P (2001) Colonisation of the human central nervous system by microglia: the roles of chemokines and vascular adhesion molecules. Prog Brain Res 132:81–93

    Article  PubMed  CAS  Google Scholar 

  • Martin C (1994) Nanomaterials: a membrane-Based synthetic approach. Science 266:1961–1966

    PubMed  CAS  Google Scholar 

  • Martin CR, Kohli P (2003) The emerging field of nanotube biotechnology. Nat Rev Drug Discov 2:29–37

    PubMed  CAS  Google Scholar 

  • Matsumoto K, Sato C, Naka Y, Kitazawa A, Whitby RL, Shimizu N (2007) Neurite outgrowths of neurons with neurotrophin-coated carbon nanotubes. J Biosci Bioeng 103:216–220

    PubMed  CAS  Google Scholar 

  • Matsumura Y (2006) Micelle carrier system in clinical trial. Nippon Rinsho 64:316–321

    PubMed  Google Scholar 

  • Matsumura Y, Hamaguchi T, Ura T, Muro K, Yamada Y, Shimada Y, Shirao K, Okusaka T, Ueno H, Ikeda M, Watanabe N (2004) Phase I clinical trial and pharmacokinetic evaluation of NK911, a micelle-encapsulated doxorubicin. Br J Cancer 91:1775–1781

    PubMed  CAS  Google Scholar 

  • Maurer N, Fenske DB, Cullis PR (2001) Developments in liposomal drug delivery systems. Expert Opin Biol Ther 1:923–947

    PubMed  CAS  Google Scholar 

  • Mayeux R (2003) Epidemiology of neurodegeneration. Annu Rev Neurosci 26:81–104

    PubMed  CAS  Google Scholar 

  • Metodiewa D, Koska C (2000) Reactive oxygen species and reactive nitrogen species: relevance to cyto(neuro)toxic events and neurologic disorders. An overview. Neurotox Res 1:197–233

    Article  PubMed  CAS  Google Scholar 

  • Nguyen HK, Lemieux P, Vinogradov SV, Gebhart CL, Guerin N, Paradis G, Bronich TK, Alakhov VY, Kabanov AV (2000) Evaluation of polyether-polyethyleneimine graft copolymers as gene transfer agents. Gene Ther 7:126–138

    PubMed  CAS  Google Scholar 

  • Oberdorster E (2004) Manufactured nanomaterials (fullerenes, C60) induce oxidative stress in the brain of juvenile largemouth bass. Environ Health Perspect 112:1058–1062

    Article  PubMed  CAS  Google Scholar 

  • Oberlin A, Endo M, Koyama T (1976) Filamentous growth of carbon through benzene decomposition. J Cryst Growth 32:335–349

    CAS  Google Scholar 

  • Oh KT, Bronich TK, Bromberg L, Hatton TA, Kabanov AV (2006) Block ionomer complexes as prospective nanocontainers for drug delivery. J Control Release 115:9–17

    PubMed  CAS  Google Scholar 

  • Pardridge W (1999) Vector-mediated drug delivery to the brain. Adv Drug Deliv Rev 36:299–321

    PubMed  CAS  Google Scholar 

  • Pulskamp K, Diabate S, Krug HF (2007) Carbon nanotubes show no sign of acute toxicity but induce intracellular reactive oxygen species in dependence on contaminants. Toxicol Lett 168:58–74

    PubMed  CAS  Google Scholar 

  • Raja P, Connolley J, Ganesan GP, Ci L, Ajayan PM, Nalamasu O, Thompson DM (2007) Impact of carbon nanotube exposure, dosage and aggregation on smooth muscle cells. Toxicol Lett 169:51–63

    PubMed  CAS  Google Scholar 

  • Richardson-Burns S, Hendricks JL, Foster B, Povlich LK, Kim DH, Martin DC (2007) Polymerization of the conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) around living neural cells. Biomaterials 28:1539–1552

    PubMed  CAS  Google Scholar 

  • Roy S, Zhang K, Roth T, Vinogradov S, Kao RS, Kabanov A (1999) Reduction of fibronectin expression by intravitreal administration of antisense oligonucleotides. Nat Biotechnol 17:476–479

    PubMed  CAS  Google Scholar 

  • Sayes C, Liang F, Hudson JL, Mendez J, Guo W, Beach JM, Moore VC, Doyle CD, West JL, Billups WE, Ausman KD, Colvin VL (2006) Functionalization density dependence of single-walled carbon nanotubes cytotoxicity in vitro. Toxicol Lett 161:135–142

    PubMed  CAS  Google Scholar 

  • Schubert D, Dargusch R, Raitano J, Chan SW (2006) Cerium and yttrium oxide nanoparticles are neuroprotective. Biochem Biophys Res Commun 342:86–91

    PubMed  CAS  Google Scholar 

  • Shaw L, Korecka M, Clark CM, Lee VM, Trojanowski JQ (2007) Biomarkers of neurodegenertion for diagnosis and monitoring therapeutics. Nat Rev Drug Discov 6:295–303

    PubMed  CAS  Google Scholar 

  • Shi N, Zhang Y, Zhu C, Boado RJ, Pardridge WM (2001) Brain-specific expression of an exogenous gene after i.v. administration. Proc Natl Acad Sci USA 98:12754–12759

    PubMed  CAS  Google Scholar 

  • Silva GA (2005) Nanotechnology approaches for the regeneration and neuroprotection of the central nervous system. Surg Neurol 63:301–306

    PubMed  Google Scholar 

  • Silva GA, Czeisler C, Niece KL, Beniash E, Harrington DA, Kessler JA, Stupp SI (2004) Selective differentiation of neural progenitor cells by high-epitope density nanofibers. Science 303:1352–1355

    PubMed  CAS  Google Scholar 

  • Simard AR, Rivest S (2004) Bone marrow stem cells have the ability to populate the entire central nervous system into fully differentiated parenchymal microglia. Faseb J 18:998–1000

    PubMed  CAS  Google Scholar 

  • Solomatin SV, Bronich TK, Kabanov VA, Eisenberg A, Kabanov AV (2003) Environmentally responsive nanoparticles from block ionomer complexes: effect of pH and ionic strength. Langmuir 19:8069–8076

    CAS  Google Scholar 

  • Solomatin SV, Bronich TK, Eisenberg A, Kabanov VA, Kabanov AV (2004) Colloidal stability of aqueous dispersions of block ionomer complexes: effects of temperature and salt. Langmuir 20:2066–2068

    PubMed  CAS  Google Scholar 

  • Solomatin SV, Bronich TK, Eisenberg A, Kabanov VA, Kabanov AV (2007) Nanomaterials from ionic block copolymers and single-, double-, and triple-tail surfactants. Langmuir 23:2838–2842

    PubMed  CAS  Google Scholar 

  • Streit WJ, Walter SA, Pennell NA (1999) Reactive microgliosis. Prog Neurobiol 57:563–581

    PubMed  CAS  Google Scholar 

  • Svenson S, Tomalia DA (2005) Dendrimers in biomedical applications—reflections on the field. Adv Drug Deliv Rev 57:2106–2129

    PubMed  CAS  Google Scholar 

  • Tian Y, He Q, Cui Y, Li J (2006) Fabrication of protein nanotubes based on layer-by-layer assembly. Biomacromolecules 7:2539–2542

    PubMed  CAS  Google Scholar 

  • Torchilin VP (2002) PEG-based micelles as carriers of contrast agents for different imaging modalities. Adv Drug Deliv Rev 54:235–252

    PubMed  CAS  Google Scholar 

  • Torchilin VP (2004) Targeted polymeric micelles for delivery of poorly soluble drugs. Cell Mol Life Sci 61:2549–2559

    PubMed  CAS  Google Scholar 

  • Tsai CJ, Zheng J, Aleman C, Nussinov R (2006) Structure by design: from single proteins and their building blocks to nanostructures. Trends Biotechnol 24:449–454

    PubMed  CAS  Google Scholar 

  • Vinogradov SV (2006) Colloidal microgels in drug delivery applications. Curr Pharm Des 12:4703–4712

    PubMed  CAS  Google Scholar 

  • Vinogradov SV, Bronich TK, Kabanov AV (2002) Nanosized cationic hydrogels for drug delivery: preparation, properties and interactions with cells. Adv Drug Deliv Rev 54:135–147

    PubMed  CAS  Google Scholar 

  • Vinogradov S, Batrakova EV, Kabanov AV (2004) Nanogels for oligonucleotide delivery to the brain. Bioconjug Chem 15:50–60

    PubMed  CAS  Google Scholar 

  • Wang F, Bronich TK, Kabanov AV, Rauh RD, Roovers J (2005) Synthesis and evaluation of a star amphiphilic block copolymer from poly(epsilon-caprolactone) and poly(ethylene glycol) as a potential drug delivery carrier. Bioconjug Chem 16:397–405

    PubMed  CAS  Google Scholar 

  • Wu G, Barth RF, Yang W, Kawabata S, Zhang L, Green-Church K (2006) Targeted delivery of methotrexate to epidermal growth factor receptor-positive brain tumors by means of cetuximab (IMC-C225) dendrimer bioconjugates. Mol Cancer Ther 5:52–59

    PubMed  CAS  Google Scholar 

  • Xiao R, Cho SI, Liu R, Lee SB (2007) Controlled electrochemical synthesis of conductive polymer nanotube structures. J Am Chem Soc 129:4483–4489

    PubMed  CAS  Google Scholar 

  • Yan X, He Q, Wang K, Duan L, Cui Y, Li J (2007) Transition of cationic dipeptide nanotubes into vesicles and oligonucleotide delivery. Angew Chem Int Ed Engl 46:2431–2434

    PubMed  CAS  Google Scholar 

  • Yang H, Kao WJ (2006) Dendrimers for pharmaceutical and biomedical applications. J Biomater Sci Polym Ed 17:3–19

    PubMed  CAS  Google Scholar 

  • Yang F, Murugan R, Ramakrishna S, Wang X, Ma YX, Wang S (2004) Fabrication of nano-structured porous PLLA scaffold intended for nerve tissue engineering. Biomaterials 25:1891–1900

    PubMed  CAS  Google Scholar 

  • Yang W, Barth RF, Wu G, Kawabata S, Sferra TJ, Bandyopadhyaya AK, Tjarks W, Ferketich AK, Moeschberger ML, Binns PJ, Riley KJ, Coderre JA, Ciesielski MJ, Fenstermaker RA, Wikstrand CJ (2006) Molecular targeting and treatment of EGFRvIII-positive gliomas using boronated monoclonal antibody L8A4. Clin Cancer Res 12:3792–3802

    PubMed  CAS  Google Scholar 

  • Yuwono VM, Hartgerink JD (2007) Peptide amphiphile nanofibers template and catalyze silica nanotube formation. Langmuir 23:5033–5038

    PubMed  CAS  Google Scholar 

  • Zhang GD, Harada A, Nishiyama N, Jiang DL, Koyama H, Aida T, Kataoka K (2003) Polyion complex micelles entrapping cationic dendrimer porphyrin: effective photosensitizer for photodynamic therapy of cancer. J Control Release 93:141–150

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the grants from the National Institutes of Health RO1 NS36229, RO1 NS051335, RO1 CA89225, and RO1 CA116591, the National Science Foundation DMR 0513699, and the US Department of Defense USAMRMC 06108004 (all to AVK). The paper has been conceived and developed by the authors during the Polymer Therapeutics course taught in Spring 2007 in the Pharmaceutical Sciences Graduate Program (PSGP) as part of the extension of this training program at the University of Nebraska Medical Center (course coordinators A. V. Kabanov and T. K. Bronich).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander V. Kabanov.

Additional information

Jamie L. Gilmore and Xiang Yi made equal contributions.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gilmore, J.L., Yi, X., Quan, L. et al. Novel Nanomaterials for Clinical Neuroscience. J Neuroimmune Pharmacol 3, 83–94 (2008). https://doi.org/10.1007/s11481-007-9099-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11481-007-9099-6

Keywords

Navigation