Skip to main content
Log in

Relationship between Recrystallization Rate of Ice Crystals in Sugar Solutions and Water Mobility in Freeze-Concentrated Matrix

  • Original Research
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

To better understand the relation between recrystallization rate and water mobility in freeze-concentrated matrix, isothermal ice recrystallization rates in several sugar aqueous solutions and self-diffusion coefficients of water component in corresponding freeze-concentrated matrix were measured. The sugars used were fructose, glucose, maltose, and sucrose. The sugar concentrations and temperature were varied so that ice contents for all samples were almost equal. Neither recrystallization rates nor diffusion coefficients depended uniformly on temperature. The recrystallization rates increased with increasing the diffusion coefficients, and a direct relationship was found between recrystallization rate and diffusion coefficient. This indicated that self-diffusion coefficient of water component in freeze-concentrated matrix is a useful parameter for predicting and controlling recrystallization rate in sugar solutions relevant to frozen desserts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. O.R. Fennema, In: Low-temperature Preservation of Foods and Living Matter, edited by O.R. Fennema, W.D. Powrie, E.H. Marth (Marcel Dekker, New York, 1973)

    Google Scholar 

  2. R.W. Hartel, In: The Properties of Water in Foods: ISOPOW 6, edited by D.S. Reid (Blackie Academic & Professional, London 1998)

    Google Scholar 

  3. R.W. Hartel, Crystallization in Foods (Aspen Publisher, Gaithersburg 2001)

    Google Scholar 

  4. A.E. Bevilacqua and N.E. Zaritzky, J Food Sci 47, 1410–1414 (1982)

    Article  Google Scholar 

  5. M.N. Martino and N.E. Zaritzky, Science des Aliments 7, 147–166 (1987)

    CAS  Google Scholar 

  6. M.N. Martino and N.E. Zaritzky, J Food Sci 53, 1631–1637, 1649 (1988)

    Article  Google Scholar 

  7. M.N. Martino and N.E. Zaritzky, Cryobiology 26, 138–148 (1989)

    Article  CAS  Google Scholar 

  8. D.P. Donhowe and R.W. Hartel, Int Dairy J 6, 1191–1208 (1996)

    Article  Google Scholar 

  9. D.P. Donhowe and R.W. Hartel, Int Dairy J 6, 1209–1221 (1996)

    Article  Google Scholar 

  10. T. Hagiwara and R.W. Hartel, J Dairy Sci 79, 735–744 (1996)

    CAS  Google Scholar 

  11. T. Miller-Livney and R.W. Hartel, J Dairy Sci 80, 447–456 (1997)

    Article  CAS  Google Scholar 

  12. E. Ben-Yoseph and R.W. Hartel, J Food Eng 38, 309–329 (1998)

    Article  Google Scholar 

  13. R.L. Sutton, A. Lips, G. Piccirillo, and A. Szthehlo, J Food Sci 61, 741–745 (1996)

    Article  CAS  Google Scholar 

  14. R.L. Sutton, A. Lips, and G. Piccirillo, J Food Sci 61, 746–748 (1996)

    Article  CAS  Google Scholar 

  15. R.L. Sutton, D. Cooke, and A. Russell, J Food Sci 62, 1145–1149 (1997)

    Article  CAS  Google Scholar 

  16. R.L. Sutton and J. Wilcox, J Food Sci 63, 104–107 (1998).

    Article  CAS  Google Scholar 

  17. R.L. Sutton, I.D. Evans, and J.F. Crilly, J Food Sci 59, 1227–1233 (1994)

    Article  CAS  Google Scholar 

  18. A. Regand and H.D. Goff, Food Hydrocolloids 17, 95–102 (2003)

    Article  CAS  Google Scholar 

  19. A.K. Carrington, H.D. Goff, and D.W. Stanley, Food Res Int 29, 207–213 (1996)

    Article  CAS  Google Scholar 

  20. D.R. Martin, S. Ablett, A. Darke, R.L. Sutton, and M. Sahagian, J Food Sci 64, 46–49 (1999)

    Article  CAS  Google Scholar 

  21. M. Rampp, C. Buttersack, and H.-D. Lüdemann, Carbohydr Res 328, 561–572 (2000)

    Article  CAS  Google Scholar 

  22. S. Bolliger, H. Wildmoser, H.D. Goff, and B.W. Tharp, Int Dairy J 10, 791–797 (2000)

    Article  Google Scholar 

  23. I.M. Lifshitz and V.V. Slyozov, J Phys Chem Solids 19, 35–50 (1961)

    Article  Google Scholar 

  24. C. Wagner, Z Elektrochem 65, 581–591 (1961)

    CAS  Google Scholar 

  25. F.E. Young and F.T. Jones, J Phys Chem 53, 1334–1350 (1949)

    Article  CAS  Google Scholar 

  26. F.E. Young, F.T. Jones, and H.J. Lewis, J Phys Chem 56, 1093–1096 (1952)

    Article  CAS  Google Scholar 

  27. F.E. Young, J Phys Chem 61, 616–619 (1957)

    Article  CAS  Google Scholar 

  28. CRC Handbook of Chemistry, Physics, 84th Ed., edited by D.R. Lide (CRC Press, Boca Raton 2003)

  29. D.P. Donhowe, R.W. Hartel, and R.C. Bradley Jr, J Dairy Sci 74, 3334–3344 (1991)

    Article  Google Scholar 

  30. J.E. Tanner, J Chem Phys 52, 2523–2526 (1970)

    Article  CAS  Google Scholar 

  31. N. Ekdawi-Sever, J.J. de Pablo, E. Feick, and E. von Meerwall, J Phys Chem A, 107, 936–943 (2003)

    Article  CAS  Google Scholar 

  32. A.C. English, M. Dole, J Am Chem Soc 72, 3261–3267 (1950)

    Article  CAS  Google Scholar 

  33. J.K. Gladden, M. Dole, J Am Chem Soc 75, 3900–3904 (1953)

    Article  CAS  Google Scholar 

  34. C.J. Roberts, P.G. Debenedetti, J Phys Chem B 103, 7308–7318 (1999)

    Article  CAS  Google Scholar 

  35. A.H. Muhr and J.M.V. Blanshard, J Food Technol 21, 683–710 (1986)

    CAS  Google Scholar 

  36. M.E. Sahagian and H.D. Goff, Food Res Int 28, 1–8 (1995)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the College of Agricultural and Life Science at the University of Wisconsin. The authors also wish to thank Dr. Baomin Liang for his technical support to the present research. T. H. is also grateful to the Ministry of Education, Culture, Sports, Science, and Technology of Japan that made possible this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomoaki Hagiwara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hagiwara, T., Hartel, R.W. & Matsukawa, S. Relationship between Recrystallization Rate of Ice Crystals in Sugar Solutions and Water Mobility in Freeze-Concentrated Matrix. Food Biophysics 1, 74–82 (2006). https://doi.org/10.1007/s11483-006-9009-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-006-9009-0

Key words

Navigation