Skip to main content
Log in

Ice Morphology: Fundamentals and Technological Applications in Foods

  • Review
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

Freezing is the process of ice crystallization from supercooled water. Ice crystal morphology plays an important role in the textural and physical properties of frozen and frozen-thawed foods and in processes such as freeze drying, freeze concentration, and freeze texturization. Size and location of ice crystals are key in the quality of thawed tissue products. In ice cream, smaller ice crystals are preferred because large crystals results in an icy texture. In freeze drying, ice morphology influences the rate of sublimation and several morphological characteristics of the freeze-dried matrix as well as the biological activity of components (e.g., in pharmaceuticals). In freeze concentration, ice morphology influences the efficiency of separation of ice crystals from the concentrated solution. The cooling rate has been the most common variable controlling ice morphology in frozen and partly frozen systems. However, several new approaches show promise in controlling nucleation (consequently, ice morphology), among them are the use of ice nucleation agents, antifreeze proteins, ultrasound, and high pressure. This paper summarizes the fundamentals of freezing, methods of observation and measurement of ice morphology, and the role of ice morphology in technological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. D.S. Reid, Basic physical phenomena in the freezing and thawing of plant and animal tissues, in Frozen Food Technology, ed. by C.P. Mallet (Chapman & Hall, London, 1993), pp. 1–19

    Google Scholar 

  2. J.M. Aguilera, Why food microstructure? J Food Eng 67, 3–11 (2005)

    Article  Google Scholar 

  3. O. Miyawaki, Analysis and control of ice crystal structure in frozen food and their application to food processing. Food Sci Technol Res 7, 1–7 (2001)

    Article  CAS  Google Scholar 

  4. R.W. Hartel, Crystallization in Foods (Aspen, Gaithersburg, 2001)

    Google Scholar 

  5. M. Kochs, C.H. Körber, I. Heschel, B. Nunner, The influence of the freezing process on vapour transport during sublimation in vacuum-freeze-drying. Int J Heat Mass Transfer 34, 2395–2408 (1991)

    Article  CAS  Google Scholar 

  6. A. Hottot, S. Vessot, J. Andrieu, A direct characterization method of the ice morphology relationship between mean crystals size and primary drying times of freeze-drying processes. Drying Technol 22, 2009–2021 (2004)

    Article  Google Scholar 

  7. A. Hottot, S. Vessot, J. Andrieu, Freeze drying of pharmaceuticals in vials: Influence of freezing protocol and sample configuration on ice morphology and freeze-dried cake texture. Chem Eng Process 46, 666–674 (2006)

    Article  CAS  Google Scholar 

  8. S.S. Deshpande, H.R. Bolin, D.K. Salunke, Freeze concentration of fruit juices. Food Technol 36, 68–82 (1982)

    CAS  Google Scholar 

  9. S. Bruin, T.R.G. Jongen, Food process engineering: the last 25 years and challenges ahead. Compr Rev Food Sci F 2, 42–81 (2003)

    Article  Google Scholar 

  10. B. Li, D.-W. Sun, Novel method for rapid freezing and thawing of foods—a review. J Food Eng 54, 175–182 (2002a)

    Article  Google Scholar 

  11. J.M. Aguilera, D.W. Stanley, Microstructural Principles of Food Processing and Engineering, 2nd edn. (Aspen, Gaithersburg, 1999)

    Google Scholar 

  12. J.M. de Man, Principles of Food Chemistry, 3rd edn. (Springer, USA, 1999)

    Google Scholar 

  13. N. Zaritzky, Physical–chemical principles in freezing, in Handbook of Frozen Food Processing and Packaging, ed. by D.-W. Sun (CRC, Boca Raton, 2006), pp. 3–31

    Google Scholar 

  14. O. Fennema, Water and ice, in Fennema’s Food Chemistry, 4th edn., ed. by S. Damodaran, K. Parkin, O. Fennema (CRC, Boca Raton, 2007)

    Google Scholar 

  15. R.P. Singh, D.R. Heldman, Introduction to Food Engineering, 3rd edn. (Academic, New York, 2001)

    Google Scholar 

  16. M.D. Alvarez, W. Canet, M.E. Tortosa, Effect of freezing rate and programmed on rheological parameters and tissue structure of potato (cv. Monalisa). Z Lebensm Unters Forsch A 204, 356–364 (1997)

    Article  CAS  Google Scholar 

  17. S.S. Roy, T.A. Taylor, H.L. Kramer, Textural and ultrastructural changes in carrot tissue as affected by blanching and freezing. J Food Sci 68, 176–180 (2001)

    Google Scholar 

  18. J. Martí, J.M. Aguilera, Efecto de la velocidad de congelación en las características mecánicas y microestructurales del arándano y de la mora silvestre. Rev Agroquim Tecnol Aliment 31, 493–504 (1991)

    Google Scholar 

  19. W. Haiying, Z. Shaozhi, C. Guangming, Experimental study on the freezing characteristics of four kinds of vegetables. Lebensm Wiss Technol 40, 1112–1116 (2007)

    Google Scholar 

  20. T.M. Ngapo, I.H. Barbare, J. Reynolds, R.F. Mawson, Freezing and thawing rate effects on drip loss from samples of pork. Meat Sci 53, 149–158 (1999)

    Article  Google Scholar 

  21. T. Pukszta, P. Palich, The effect of freezing conditions of leek storage on the level of thawing effluent. Acta Agrophysica 7, 191–196 (2006)

    Google Scholar 

  22. T. Pukszta, P. Palich, The effect of freezing conditions of strawberry storage on the level of thawing drip loss. Acta Agrophysica 9, 203–208 (2007)

    Google Scholar 

  23. R.L. Garrote, R.A. Bertone, Osmotic concentration at low temperature of frozen strawberry halves. Effect of glycerol glucose, and sucrose solution on exudates loss during thawing. Lebensm Wiss Technol 22, 264–267 (1989)

    Google Scholar 

  24. S. Onishi, O. Miyawaki, Osmotic dehydrofreezing for protection of rheological properties of vegetables from freezing-injury. Cryobiol Cryotechnol 51, 69–73 (2005)

    Google Scholar 

  25. C.M. Marani, M.E. Agnelli, R.H. Mascheroni, Osmo-frozen fruits: mass transfer and quality evaluation. J Food Eng 79, 1122–1130 (2007)

    Article  CAS  Google Scholar 

  26. J. Kondratowicz, P. Matusevićius, Use of low temperatures for food preservation. Veterinarija ir Zootechnika T 17, 88–92 (2002)

    Google Scholar 

  27. S. Adapa, K.A. Schmidt, I.J. Jeon, T.J. Herald, R.A. Flores, Mechanisms of ice crystallization and recrystallization in ice cream: a review. Food Rev Int 16, 259–271 (2000)

    Article  CAS  Google Scholar 

  28. H.D. Goff, 65 years of ice cream science. Int Dairy J 18, 754–758 (2008)

    Article  Google Scholar 

  29. R. Sutton, J. Wilcox, Recrystallization in model ice cream solutions as affected by stabilizers concentration. J Food Sci 63, 9–11 (1998)

    Article  CAS  Google Scholar 

  30. R. Sutton, J. Wilcox, Recrystallization in ice cream as affected by stabilizers concentration. J Food Sci 63, 104–107 (1998)

    Article  CAS  Google Scholar 

  31. A.A. Flores, H.D. Goff, Ice crystal size distributions in dynamically frozen model solutions and ice cream as affected by stabilizers. J Dairy Sci 82, 1399–1407 (1999)

    Article  CAS  Google Scholar 

  32. A.A. Flores, H.D. Goff, Recrystallization in ice cream after constant and cycling temperature storage conditions as affected by stabilizers. J Dairy Sci 82, 1408–1415 (1999)

    Article  CAS  Google Scholar 

  33. A. Regand, H.D. Goff, Structure and ice recrystallization in frozen stabilized ice cream model systems. Food Hydrocolloid 17, 95–102 (2003)

    Article  CAS  Google Scholar 

  34. S. Bolliger, H. Wildmoser, H.D. Goff, B.W. Tharp, Relationship between ice cream mix viscoelasticity and ice crystal growth in ice cream. Int Dairy J 10, 791–797 (2000)

    Article  Google Scholar 

  35. H.D. Goff, R.W. Hartel, Ice cream and frozen dessert, in Handbook of Frozen Foods, ed. by Y.H. Hui, P. Cornillon, I.G. Legaretta, M.H. Lim, K.D. Murrell, W.-K. Nip (Marcel Dekker, New York, 2004). cap. 30

    Google Scholar 

  36. A. Regand, H.D. Goff, Ice recrystallization inhibition in ice cream as affected by ice structuring proteins from winter wheat grass. J Dairy Sci 89, 49–57 (2006)

    Article  CAS  Google Scholar 

  37. S. Damodaran, Inhibition of ice crystal growth in ice cream mix by gelatin hydrolysate. J Agric Food Chem 55, 10918–10923 (2007)

    Article  CAS  Google Scholar 

  38. T. Hagiwara, R.W. Hartel, S. Matsukawa, Relationship between recrystallization rate of ice crystals in sugar solutions and water mobility in freeze-concentrated matrix. Food Biophys 1, 74–82 (2006)

    Article  Google Scholar 

  39. Y. Roos, M. Karel, Applying state diagrams to food processing and development. Food Technol 44, 65–71 (1991). 107

    Google Scholar 

  40. M.E. Sahagian, H.D. Goff, Fundamentals aspects of the freezing process, in Freezing Effects on Food Quality, ed. by L.E. Jeremiah (Marcel Dekker, New York, 1996), pp. 1–12

    Google Scholar 

  41. M. Matsutomo, S. Saito, I. Ohmine, Molecular dynamics simulation of the ice nucleation. Nature 416, 409–413 (2002)

    Article  CAS  Google Scholar 

  42. B. Wathen, M. Kuiper, V. Walker, Z. Jia, New simulation model of multicomponent crystal growth and inhibition. Chem Eur J 10, 1598–1605 (2004)

    Article  CAS  Google Scholar 

  43. R. Gormley, T. Walshe, K. Hussey, F. Butler, The effect of fluctuations vs. constant frozen storage temperature regimes on some quality parameters of selected food products. Lebensm Wiss Technol 35, 190–200 (2002)

    Article  CAS  Google Scholar 

  44. Y. Phimolsiripol, U. Siripatrawan, V. Tulyathan, D.J. Cleland, Effects of freezing and temperature fluctuations during frozen storage on frozen dough and bread quality. J Food Eng 84, 48–56 (2008)

    Article  Google Scholar 

  45. M.D. Alvarez, W. Canet, Kinetics of softening of potato tissue by temperature fluctuations in frozen storage. Eur Food Res Technol 210, 273–279 (2000)

    Article  CAS  Google Scholar 

  46. H.-D. Belitz, W. Grosch, P. Schieberle, Food Chemistry (Springer, New York, 2004)

    Google Scholar 

  47. M. Akyurt, G. Zaki, B. Habeebullah, Freezing phenomena in ice–water systems. Energ Convers Manage 43, 1773–1789 (2002)

    Article  CAS  Google Scholar 

  48. K.G. Libbrecht, The physics of snow crystals. Rep Prog Phys 68, 855–895 (2005)

    Article  Google Scholar 

  49. J. Nelson, Growth mechanisms to explain the primary and secondary habits of snow crystals. Philos Mag A 81, 2337–2373 (2001)

    CAS  Google Scholar 

  50. A.A. Shibkov, M.A. Zheltov, A.A. Korolev, A.A. Leonov, Kinetic phase diagram of fractal and euclidean nonequilibrium growth patterns of Ice Ih in supercooled Water. Dokl Phys Chem 389, 94–97 (2003)

    Article  CAS  Google Scholar 

  51. A.A. Shibkov, Y.I. Golovin, M.A. Zheltov, A.A. Korolev, A.A. Leonov, Morphology diagram of nonequilibrium patterns of ice crystals growing in supercooled water. Physica A 319, 65–79 (2003)

    Article  CAS  Google Scholar 

  52. A. Luyet, Basic physical phenomena in the freezing and thawing of animal and plant tissues, in The Freezing Preservation of Foods, ed. by D.K. Tressler, W.B. Van Arsdel, M.J. Copley (AVI Publishing Co., Westport, CN, 1968), pp. 1–25

    Google Scholar 

  53. J.M. Pardo, F. Suess, K. Niranjan, An investigation into the relationship between freezing rate and mean ice crystal size for coffee extracts. Trans IChemE 80, 176–182 (2002)

    Google Scholar 

  54. M.S. Leloux, The influence of macromolecules on the freezing of water. Polymer Reviews 39, 1–16 (1999)

    Article  Google Scholar 

  55. H. Zhang, I. Hussain, M. Brust, M.F. Butler, S.P. Rannard, A.I. Cooper, Aligned two- and three-dimensional structures by directional freezing of polymers and nanoparticles. Nature Mat 4, 787–793 (2005)

    Article  CAS  Google Scholar 

  56. K.R. Diller, Bioheat and mass transfer as view through a microscope. J Biomech Eng 127, 67–84 (2005)

    Article  Google Scholar 

  57. B. Körber, Phenomena at the advancing ice–liquid interface: solutes, particles, and biological cells. Q Rev Biophys 21, 229–298 (1988)

    Article  Google Scholar 

  58. C.M. Neils, K.R. Diller, An optical-axis freezing stage for laser-scanning microscopy of broad ice–water interfaces. J Microsc 216, 249–262 (2004)

    Article  CAS  Google Scholar 

  59. L. Arnaud, M. Gay, J.M. Bartola, P. Duval, Imaging of firn and bubbly ice in coaxial reflected light: a new technique for the characterization of these porous media. J Glaciol 44, 326–332 (1998)

    Google Scholar 

  60. E. Faydi, P. Andrieu, P. Laurent, Experimental study and modelling of the ice crystal morphology of model standard ice cream: part I: direct characterization method and experimental data. J Food Eng 48, 283–291 (2001)

    Article  Google Scholar 

  61. A. Caillet, C. Cogné, J. Andrieu, P. Laurent, A. Rivoire, Characterization of ice cream structure by direct optical microscopy: influence of freezing parameters. Lebensm Wiss Technol 36, 743–749 (2003)

    Article  CAS  Google Scholar 

  62. J.C. Russ, Image Analysis of Food Microstructure (CRC, Boca Raton, 2004)

    Book  Google Scholar 

  63. S. Kourosh, K.R. Diller, M.E. Crawford, Microscopy study of coupled heat and mass transport during unidirectional solidification of binary solutions. I. Thermal analysis. Int J Heat Mass Transfer 33, 29–38 (1990)

    Article  CAS  Google Scholar 

  64. S. Kourosh, K.R. Diller, M.E. Crawford, Microscopy study of coupled heat and mass transport during unidirectional solidification of binary solutions. II. Mass transfer analysis. Int J Heat Mass Transfer 33, 39–53 (1990)

    Article  CAS  Google Scholar 

  65. T. Hagiwara, H. Wang, T. Suzuki, R. Takai, Fractal analysis of ice in frozen food. J Agric Food Chem 50, 3085–3090 (2002)

    Article  CAS  Google Scholar 

  66. T. Hagiwara, R. Hayashi, T. Suzuki, R. Takai, Fractal analysis of ice crystals in frozen meat. Jpn J Food Eng 4, 11–17 (2003)

    Google Scholar 

  67. Y. Koshiro, M. Watanabe, R. Takai, H. Hagiwara, T. Susuki, Evaluation of morphological change and aggregation process of ice crystals in frozen food by using fractal analysis. Transactions of the Japan Society of Refrigeration and Air Conditioning Engineers 23, 299–304 (2006)

    CAS  Google Scholar 

  68. S. Ueno, G.-S. Do, Y. Sagara, K.-I. Kudoh, T. Higuchi, Three-dimensional measurement of ice crystals in frozen dilute solution. Int J Refrig 27, 302–308 (2004)

    Article  CAS  Google Scholar 

  69. G.-S. Do, Y. Sagara, M. Tabata, K.-I. Kudoh, T. Higuchi, Three-dimensional measurement of ice crystals in frozen beef with a micro-slicer processing system. Int J Refrig 27, 184–190 (2004)

    Article  Google Scholar 

  70. R. Mahdjoub, P. Chouvenc, M.J. Seurin, J. Andrieu, A. Briguet, Sucrose solution freezing studied by magnetic resonant imaging. Carbohydr Res 341, 492–498 (2006)

    Article  CAS  Google Scholar 

  71. J.P. Hindmarsh, C. Bucley, A.B. Russell, X.D. Chen, L.F. Gladden, D.I. Wilson, M.L. Johns, Imaging droplet freezing using MRI. Chem Eng Sci 59, 2113–2122 (2004)

    Article  CAS  Google Scholar 

  72. M.F. Butler, Instability formation and directional dendritic growth of ice studied by optical interferometry. Cryst Growth Des 1, 213–223 (2001)

    Article  CAS  Google Scholar 

  73. M.F. Butler, Growth of solutal ice dendrites studied by optical interferometry. Cryst Growth Des 2, 59–66 (2002)

    Article  CAS  Google Scholar 

  74. Y. Teraoka, A. Saito, S. Okawa, Study on anisotropy of growth of ice rate of ice crystal in supercooled water. Int J Refrig 27, 242–247 (2004)

    Article  CAS  Google Scholar 

  75. H. Ishiguro, K. Koike, Three-dimensional behaviour of ice crystals and biological cells during freezing of cells suspensions. Ann NY Acad Sci 858, 235–244 (1998)

    Article  CAS  Google Scholar 

  76. A. Bevilacqua, N.E. Zaritzky, A. Calvelo, Histological measurements of ice in frozen beef. J Food Technol 14, 237–251 (1979)

    Article  Google Scholar 

  77. O. Miyawaki, T. Abe, T. Yano, Freezing and ice structure formed in protein gels. Biosc Biotech Bioch 56, 953–957 (1992)

    Article  CAS  Google Scholar 

  78. M. Kochs, C.H. Körber, I. Heschel, B. Nunner, The influence of the freezing process on the vapour transport during sublimation in vacuum–freezing-drying of macroscopic samples. Int J Heat Mass Transfer 36, 1727–1738 (1993)

    Article  CAS  Google Scholar 

  79. H. Schoof, L. Bruns, A. Fisher, I. Herschel, G. Rau, Dendritic ice morphology in unidirectionally solidified collagen suspensions. J Cryst Growth 209, 122–129 (2000)

    Article  CAS  Google Scholar 

  80. N. Du, X.Y. Liu, Controlled ice nucleation in microsized water droplet. Appl Phys Lett 81, 445–447 (2002)

    Article  CAS  Google Scholar 

  81. N. Du, X.Y. Liu, C.L. Hew, Ice nucleation inhibition: mechanism of antifreeze by antifreeze protein. J Biol Chem 278, 36000–36004 (2003)

    Article  CAS  Google Scholar 

  82. J. Welti-Chanes, D. Bermúdez, A. Valdez-Fragoso, H. Mújica-Paz, S.M. Alzamora, Principles of freeze-concentration and freeze-drying, in Handbook of Frozen Foods, ed. by Y.H. Hui, P. Cornillon, I.G. Legaretta, M.H. Lim, K.D. Murrell, W.-K. Nip (Marcel Dekker, New York, 2004). cap. 2

    Google Scholar 

  83. C.J. King, Freeze-drying of foods (CRC, Cleveland, 1971)

    Google Scholar 

  84. A. Ratti, Hot air and freeze-drying of high-value foods: a review. J Food Eng 49, 311–319 (2001)

    Article  Google Scholar 

  85. J.M. Aguilera, J.M. Flink, A combined experiment–computer technique for determining heating programs for batch and continuous freeze-dryers. J Food Technol 9, 329–344 (1974)

    Article  Google Scholar 

  86. J.A. Searles, J.F. Carpenter, T.W. Randolph, The ice nucleation temperature determines the primary drying rate of lyophilization for samples frozen on a temperature-controlled shelf. J Pharm Sci 90, 860–871 (2001)

    Article  CAS  Google Scholar 

  87. H. Sadikoglu, M. Ozdemir, M. Seker, Freeze-drying of pharmaceutical products: research and development needs. Dry Technol 24, 849–861 (2006)

    Article  CAS  Google Scholar 

  88. K. Nakagawa, A. Hottot, S. Vessot, J. Andrieu, Modeling of freezing step during freeze-drying of drugs in vials. AIChE J 53, 1362–1372 (2007)

    Article  CAS  Google Scholar 

  89. X.C. Tang, M.J. Pikal, Design of freeze-drying processes for pharmaceuticals: practical advice. Pharm Res 21, 191–200 (2004)

    Article  CAS  Google Scholar 

  90. Y. Sagara, Advances in transport phenomena during freezing-drying of food materials: fundamentals and applications. Food Sci Technol Res 7, 183–190 (2001)

    Article  Google Scholar 

  91. S. Barnett, in Engineering of Food Preservation and Biochemical Processes, ed. by C.J. King. Freezing of coffee extract to produce a dark colored freeze-dried product (AIChE Symposium Series 132, 1973), pp. 26–32

  92. S.N. Katz, D.E. Jr. Dwyer, Process for freezing coffee extract. US Patent 3,966,979 (1976)

  93. R.W. Hartel, Evaporation and freeze concentration, in Handbook of Food Engineering, ed. by D.R. Heldman, D.B. Lund (Marcel Dekker, New York, 1992), pp. 341–392

    Google Scholar 

  94. N.J.J. Huige, H.A.C. Thijssen, Production of large crystals by continuous ripening in a stirred tank. J Cryst Growth 13/14, 483–487 (1972)

    Article  Google Scholar 

  95. S.K. Bae, O. Miyawaki, S. Arai, Control of freezing front structure and its effect on the concentration efficiency in progressive freeze-concentration. Cryobio Cryotech 40, 29–32 (1994). (in Japanese)

    Google Scholar 

  96. L. Liu, O. Miyawaki, K. Nakamura, Progressive freeze-concentration of model liquid food. Food Sci Technol Int Tokyo 3, 348–352 (1997)

    Article  Google Scholar 

  97. N.J.J. Huige, Nucleation and growth of ice crystals from water and sugar solutions in continuous stirred tank crystallizers. PhD dissertation, TU Eindhoven, the Netherlands, 1972

  98. A.M. Omran, C.J. King, Kinetics of ice crystallization in sugar solutions and fruit juices. AIChE J 20, 795–803 (1974)

    Article  CAS  Google Scholar 

  99. J.H. Stocking, C.J. King, Secondary nucleation of ice in sugar solutions and fruit juices. AIChE J 22, 131–140 (1976)

    Article  CAS  Google Scholar 

  100. X. Gu, T. Suzuki, O. Miyawaki, Limiting partition coefficient in progressive freeze-concentration. J Food Sci 70, E546–E551 (2005)

    CAS  Google Scholar 

  101. L. Liu, O. Miyawaki, K. Hayakawa, Progressive freeze concentration of tomato juice. Food Sci Technol Res 5, 108–112 (1999)

    Article  Google Scholar 

  102. F.A. Ramos, J.L. Delgado, E. Bautista, A.L. Morales, C. Duque, Changes in volatiles with the application of progressive freeze-concentration to Andes berry (Rubus glaucus benth). J Food Eng 63, 291–297 (2005)

    Article  Google Scholar 

  103. Y. Shirai, M. Wakisaka, O. Miyawaki, S. Sakashita, Effect of seed ice on formation of tube ice with high purity for a freeze waste water treatment system with a bubble-flow circulator. Water Res 33, 1325–1329 (1999)

    Article  CAS  Google Scholar 

  104. O. Miyawaki, L. Liu, Y. Shirai, S. Sakashita, K. Kagitani, Tubular ice system for scale-up of progressive freeze-concentration. J Food Eng 69, 107–113 (2005)

    Article  Google Scholar 

  105. J.M. Aguilera, Generation of engineered structures in gels, in Physical Chemistry of Foods, ed. by H.G. Schwartzberger, R.W. Hartel (Marcel Dekker, New York, 1992), pp. 387–421

    Google Scholar 

  106. J.M. Aguilera, P.J. Lillford, Structure–property relationships in foods, in Food Materials Science: Principles and Practice, ed. by J.M. Aguilera, P.J. Lillford (Springer, New York, 2008), pp. 229–254

    Google Scholar 

  107. P.J. Lillford, Freeze-texturing and others aspects of the effects of freezing on food quality, in Properties of Water in Foods, ed. by D. Simatos, J.L. Multon (Martinus Nijhoff, Dordrecht, 1985), pp. 543–553

    Google Scholar 

  108. R. Lawrence, F. Consolación, P. Jelen, Formation of structured protein foods by freeze texturization. Food Technol 40, 77–90 (1986)

    CAS  Google Scholar 

  109. E. Kolakowski, M. Wianecki, G. Bortnowska, J. Renata, Trypsin treatment to improve freeze texturization of minced bream. J Food Sci 62, 737–752 (1997)

    Article  CAS  Google Scholar 

  110. D.-W. Sun, L. Zheng, Innovations in freezing process, in Handbook of Frozen Food Processing and Packaging, ed. by D.-W. Sun (CRC Press, Boca Raton, 2006), pp. 175–195

    Google Scholar 

  111. C.B. Holt, Substances which inhibit ice nucleation: a review. Cryoletters 24, 269–274 (2003)

    CAS  Google Scholar 

  112. M. Gavish, R. Popoviz-Biro, M. Lahav, L. Leiserowiz, Ice nucleation of alcohols arranged in monolayers at the surface of water drops. Science 250, 973–975 (1990)

    Article  CAS  Google Scholar 

  113. M. Watanabe, S. Arai, Bacterial ice-nucleation activity and its application to freeze concentration of fresh foods for modification of their properties. J Food Eng 22, 453–473 (1994)

    Article  Google Scholar 

  114. J. Li, T.-C. Lee, Bacterial extracellular ice nucleator effects on freezing of foods. J Food Sci 63, 375–381 (1998)

    Article  CAS  Google Scholar 

  115. R. Lundheim, Physiological and ecological significance of biological ice nucleators. Philos Trans R Soc Lond B 357, 937–943 (2002)

    Article  CAS  Google Scholar 

  116. J. Li, T.-C. Lee, Bacterial ice nucleation and its potential application in the food industry. Trends Food Sci Tecnol 6, 259–265 (1995)

    Article  CAS  Google Scholar 

  117. N. Cochet, P. Widehem, Ice crystallization by Pseudomonas syringae. Appl Microbiol Biotechnol 54, 153–161 (2000)

    Article  CAS  Google Scholar 

  118. H. Kawahara, The structures and functions of ice crystal-controlling proteins from bacteria. Biosci Biotechnol Biochem 94, 492–496 (2002)

    CAS  Google Scholar 

  119. M.P. Buttner, P.S. Army, Survival of ice nucleating-active and genetically engineered non-ice nucleating Pseudomonas syringae strains after freezing. Appl Environ Microbiol 55, 1690–1694 (1989)

    CAS  Google Scholar 

  120. M.A. Turner, F. Arellano, L.M. Kozloff, Component of ice nucleation structures of bacteria. J Bacteriol 173, 6515–6527 (1991)

    CAS  Google Scholar 

  121. Y. Tsuchiya, H. Hasegawa, K. Sasaki, A study on the supercooling release of an encapsulated ice thermal storage system. Proceedings of the 14th International Conference on the Properties of Water and Steam in Kyoto, Kyoto, Japan, 2004, pp. 676-679

  122. Z. Jia, P.L. Davies, Antifreeze proteins: an unusual receptor–ligand interaction. Trends Biochem Sci 27, 101–106 (2002)

    Article  CAS  Google Scholar 

  123. S. Venketesh, C. Dayananda, Properties, potentials, and prospects of antifreeze proteins. Crit Rev Biotechnol 28, 57–82 (2008)

    Article  CAS  Google Scholar 

  124. J.A. Raymond, A.L. DeVries, Adsorption inhibition as a mechanism of freezing resistance in polar fishes. Proc Natl Acad Sci U S A 74, 2589–2593 (1977)

    Article  CAS  Google Scholar 

  125. Y. Yeh, R.E. Feeney, Antifreeze proteins: structures and mechanisms of function. Chem Rev 96, 601–618 (1996)

    Article  CAS  Google Scholar 

  126. W. Zhang, R.A. Laursen, Artificial antifreeze polypeptides: α-helical peptides with KAAK motifs have antifreeze and ice crystal morphology modifying properties. FEBS Lett 455, 372–376 (1999)

    Article  CAS  Google Scholar 

  127. C.S. Strom, X.Y. Liu, Z. Jia, Antifreeze protein-induced morphological modification mechanisms linked to ice binding surface. J Biol Chem 279, 32407–32417 (2004)

    Article  CAS  Google Scholar 

  128. C.S. Strom, X.Y. Liu, Z. Jia, Why does insect antifreeze protein from Tenebrio molitor produce pyramidal ice crystallites? Biophys J 89, 2618–2627 (2005)

    Article  CAS  Google Scholar 

  129. M. Griffith, M. Antikainen, in Advances in Low Temperature Biology, vol. 3., ed. by P.L. Steponkus. Extracelular ice formation in freezing-tolerant plants (Elsevier, Connecticut, 1993), pp. 107–139

  130. C. DeLuca, H. Chao, F.D. Sonnichsen, B.D. Sykes, P.L. Davies, Effect of type III antifreeze protein dilution and mutation on the growth inhibition of ice. Biophys J 71, 2346–2355 (1996)

    Article  CAS  Google Scholar 

  131. G.J. Warren, G.M. Mueller, R.L. McKown, Ice crystal growth suppression polypeptides and method of making. US Patent 5,118,792 (1992)

  132. S.R. Payne, D. Sandford, A. Harris, O. Young, The effects of antifreeze proteins on chilled and frozen meats. Meat Sci 37, 429–238 (1994)

    Article  CAS  Google Scholar 

  133. S.R. Payne, O. Young, Effects of pre-slaughter administration of antifreeze proteins on frozen meat quality. Meat Sci 41, 147–155 (1995)

    Article  CAS  Google Scholar 

  134. W. Boonsupthip, T.-C. Lee, Application of antifreeze protein for food preservation: effect of type III antifreeze protein for preservation of gel forming of frozen and chilled actomyosin. J Food Sci 68, 1804–1809 (2003)

    Article  CAS  Google Scholar 

  135. D.L. Aldred, M.K. Berry, D.J. Cebula, A.R. Cox, M.D. Golding, S. Golding, R.D. Keenan, M.E. Malone, S. Twigg, Frozen products. US Patent 20060024419 (2006)

  136. E, Acton, G.J. Morris, Method and apparatus for the control of solidification in liquids. W.O. 99/20420 US Patent (1992)

  137. L. Zheng, D.-W. Sun, Innovative applications of power ultrasound during food freezing—a review. Trends Food Sci Technol 17, 16–23 (2006)

    Article  CAS  Google Scholar 

  138. A. Li, D.-W. Sun, Effect of power ultrasound on freezing rate during immersion freezing of potatoes. J Food Eng 55, 277–282 (2002b)

    Article  Google Scholar 

  139. T.J. Mason, L. Paniwnyk, J.P. Lorimer, The use of ultrasound in food technology. Ultrason Sonochem 3, S253–S260 (1996)

    Article  CAS  Google Scholar 

  140. D.-W. Sun, B. Li, Microstructural change of potato tissues frozen by ultrasound-assisted immersion freezing. J Food Eng 57, 337–345 (2003)

    Article  Google Scholar 

  141. K. Nakagawa, A. Hottot, S. Vessot, J. Andrieu, Influence of controlled nucleation by ultrasounds on ice morphology of frozen formulation for pharmaceutical proteins freeze-drying. Chem Eng Process 45, 783–791 (2006)

    Article  CAS  Google Scholar 

  142. A. Mortazavi, F. Tabatabaie, Study of ice cream freezing process after treatment with ultrasound. W Applied Sci J 4, 188–190 (2008)

    Google Scholar 

  143. G.D. Botsaris, R.Y. Qian, Process and system for freeze concentration ultrasonic nucleation useful in effluent processing. US Patent 5,966,966 (1999)

  144. A. Matsuda, K. Kawasaki, Concentration and separation of impurities in liquid by freezing with supersonic radiation. J Chem Eng Japan 30, 825–830 (1997)

    Article  CAS  Google Scholar 

  145. A. Matsuda, K. Kawasaki, H. Kadota, Freeze concentration with supersonic radiation under constant freezing rate-effect of kind and concentration of solutes. J Chem Eng Japan 32, 569–572 (1999)

    Article  CAS  Google Scholar 

  146. K. Kawasaki, A. Matsuda, N. Shiraishi, Effect of freezing rate on freeze concentration characteristics with supersonic radiation. Proceedings of 10th Asian Pacific Confederation Engineering Congress, Kitakyushu, Japan, October, 2004, pp. 235–243

  147. P.W. Bridgman, Water in the liquid and five solid forms under pressure. Proc Am Acad Arts Sci 47, 439–558 (1912)

    CAS  Google Scholar 

  148. M.T. Kalichevsky, D. Knorr, P.J. Lillford, Potential food applications of high-pressure effects on ice–water transitions. Trends Food Sci Tecnol 6, 253–258 (1995)

    Article  CAS  Google Scholar 

  149. D. Chevalier, A. Le Bail, M. Ghoul, Freezing and ice crystals formed in a cylindrical food model: part II. Comparison between freezing at atmospheric pressure and pressure-shift freezing. J Food Eng 46, 287–293 (2000)

    Article  Google Scholar 

  150. P.D. Sanz, L. Otero, C. de Elvira, J.A. Carrasco, Freezing processes in high-pressure domain. Int J Refrig 20, 301–307 (1997)

    Article  CAS  Google Scholar 

  151. S. van Buggenhout, I. Messagie, A. van Loey, M. Hendrickx, Influence of low-temperature blanching combined with high-pressure shift freezing on the texture of frozen carrots. J Food Sci 70, S304–S308 (2005)

    Google Scholar 

  152. S. Zhu, H.S. Ramaswamy, A. Le Bail, Ice-crystal formation in gelatine gel during pressure shift versus conventional freezing. J Food Eng 66, 69–76 (2005)

    Article  Google Scholar 

  153. M. Lille, K. Autio, Microstructure of high-pressure vs. atmospheric frozen starch gels. Innovat Food Sci Emerg Tech 8, 117–126 (2007)

    Article  CAS  Google Scholar 

  154. M.N. Martino, L. Otero, P.D. Sanz, N.E. Zaritzky, Size and location of ice crystals in pork frozen by high-pressure-assisted freezing as compared to classical methods. Meat Sci 50, 303–313 (1998)

    Article  CAS  Google Scholar 

  155. M. Fuchigami, A. Teramoto, Changes in temperature and structure of agar gel as affected by sucrose during high-pressure freezing. J Food Sci 68, 528–533 (2003)

    Article  CAS  Google Scholar 

  156. D. Chevalier, A. Sequeira-Muñoz, A. Le Bail, B.K. Simpson, M. Ghoul, Effect of freezing conditions and storage on ice crystal and drip volume in turbot (Scophtalmus maximus). Evaluation of pressure shift freezing vs. air-blast freezing. Innovat Food Sci Emerg Tech 1, 193–201 (2001)

    Article  Google Scholar 

  157. A. Sequeira-Muñoz, D. Chevalier, B.K. Simpson, A. Le Bail, H.S. Ramaswamy, Effect of pressure-shift freezing versus air blast freezing of carp (Cyprinus carpio) fillets. J Food Biochem 29, 504–516 (2005)

    Article  Google Scholar 

  158. E. Alizadeh, N. Chapleau, M. de Lamballerie, A. Le-Bail, Effect of different freezing processes on the microstructure of Atlantic salmon (Salmo salar) fillets. Innovat Food Sci Emerg Tech 8, 493–499 (2007)

    Article  Google Scholar 

  159. M. Fuchigami, N. Kato, A. Teramoto, High-pressure-freezing effects on textural quality of carrots. J Food Sci 62, 804–808 (1997)

    Article  CAS  Google Scholar 

  160. M. Fuchigami, N. Kato, A. Teramoto, Histological changes in high-pressure-frozen carrots. J Food Sci 62, 809–812 (1997)

    Article  CAS  Google Scholar 

  161. L. Otero, M. Martino, N. Zaritzky, P.D. Sanz, Preservation of microstructure in peach and mango during high pressure-shift freezing. J Food Sci 65, 466–470 (2000)

    Article  CAS  Google Scholar 

  162. A. Luscher, O. Schlueter, D. Knorr, High pressure-low temperature processing of foods: impact on cell membranes, texture, color and visual appearance of potato tissue. Innovat Food Sci Emerg Tech 6, 59–71 (2005)

    Article  Google Scholar 

  163. B.G. Urrutia, N. Chapleau, M. Lille, A. Le Bail, K. Autio, D. Knorr, Quality related aspects of high pressure low temperature processed whole potatoes. Innovat Food Sci Emerg Tech 7, 32–39 (2006)

    Article  Google Scholar 

  164. G.T. Urrutia-Benet, T. Balogh, J. Schneider, D. Knorr, Metastable phases during high-pressure–low-temperature processing of potatoes and their impact on quality-related parameters. J Food Eng 78, 375–389 (2007)

    Article  Google Scholar 

  165. M. Kuberka, I. Heschel, B. Glasmacher, G. Rau, Preparation of collagen scaffolds and their applications in tissue engineering. Biomed Tech (Berl) 47, 485–487 (2002)

    Article  Google Scholar 

  166. F.J. O’Brien, B.A. Harley, M.A. Waller, I.V. Yanas, L.J. Gibson, P.J. Prendergast, The effect of pore size on permeability and cell attachment in collagen scaffolds for tissue engineering. Technol Health Care 15, 3–17 (2007)

    Google Scholar 

  167. S. Deville, E. Saiz, R.K. Nalla, A.P. Tomsia, Freezing as a path to build complex composites. Science 311, 515–518 (2006)

    Article  CAS  Google Scholar 

  168. F.J. O’Brien, B.A. Harley, M.A. Waller, I.V. Yanas, L. Gibson, Influence of freezing rate on pore structure in freeze-dried collagen-GAG scaffolds. Biomaterials 25, 1077–1086 (2004)

    Article  CAS  Google Scholar 

  169. A. Huidobro, R. Mendes, M.L. Nunes, Slaughtering of gilthead seabream (Sparus aurata) in liquid ice: influence on fish quality. Eur Food Res Technol 213, 267–272 (2001)

    Article  CAS  Google Scholar 

  170. A. Piñeiro, J. Barros-Velázquez, S.P. Aubourg, Effects of newer slurry ice systems on the quality of aquatic food products: a comparative review versus flake-ice chilling methods. Trends Food Sci Tecnol 15, 575–582 (2004)

    Article  CAS  Google Scholar 

  171. A. Huidobro, M. Lopez-Caballero, R. Mendes, Onboard processing of deepwater pink shrimp (Parapenaeus longirostris) with liquid ice: effect on quality. Eur Food Res Technol 214, 469–475 (2002)

    Article  CAS  Google Scholar 

  172. H. Inaba, T. Inada, A. Horibe, H. Suzuki, H. Usui, Preventing agglomeration and growth of ice particles in water with suitable additives. Int J Refrig 28, 20–26 (2005)

    Article  CAS  Google Scholar 

  173. A. Menin. Method and installation for continuous crystallization of liquids by freezing. US Patent 6,305,189 (2001)

Download references

Acknowledgments

This research has been partly funded by the Marcel Loncin Award of the Institute of Food Technologists to J.M. Aguilera and a CONICYT doctoral fellowship to G. Petzold.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillermo Petzold.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petzold, G., Aguilera, J.M. Ice Morphology: Fundamentals and Technological Applications in Foods. Food Biophysics 4, 378–396 (2009). https://doi.org/10.1007/s11483-009-9136-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-009-9136-5

Keywords

Navigation