Skip to main content
Log in

Rheological Properties and Textural Attributes of Cooked Brown and White Rice During Gastric Digestion in Vivo

  • ORIGINAL ARTICLE
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

Physical properties of gastric chyme from cooked brown and white rice meals were determined over an 8 h postprandial period in the proximal and distal stomach regions of pigs. Rice gastric chyme behaved as a Herschel-Bulkely fluid; the shear stress values were significantly different as a result of rice type, stomach region, and digestion time (p < 0.001). Shear stress values were greater in brown rice compared to white rice, and consistently greater in the proximal region compared to the distal region. The gastric chyme behaved as a weak gel, with G’ greater than G”. Rice grain firmness and hardness showed significant differences as a result of rice type, stomach region, and digestion time (p < 0.001). Rice grains decreased in firmness and hardness over the 8 h postprandial period. The median particle diameter was significantly different between stomach regions; the distal region had a smaller median particle diameter compared to the proximal region for both rice types. Our results support the traditional functional description of the stomach, with the main location of breakdown being the distal region. However, our results also suggest that food is not only broken down and immediately emptied; there is a mixing that will occur between the proximal and distal regions, although the full extent of the meal mixing still needs to be quantified. These results help to better understand the physical breakdown processes that food undergoes during gastric digestion, allowing for future optimization of food properties to control their digestive characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J. Parada, J.M. Aguilera, Food Sci. Technol. Int. 17(3), 187–204 (2011)

    Article  CAS  Google Scholar 

  2. Y. Ogawa, H. Kuensting, J. Sugiyama et al., J. Cereal Sci. 36(1), 1–7 (2002)

    Article  Google Scholar 

  3. D.V. Ranawana, C.J.K. Henry, H.J. Lightowler, D. Wang, Int. J. Food Sci. Nutr. 60(s4), 99–110 (2009)

    Article  CAS  Google Scholar 

  4. J. Brand Miller, E. Pang, L. Bramall, Am. J. Clin. Nutr. 56(6), 1034–1036 (1992)

    Google Scholar 

  5. S. Guerin, Y. Ramonet, J. LeCloarec, M.C. Meunier-Salan, P. Bourguet, C.H. Malbert, Br. J. Nutr. 85(03), 343–350 (2001)

    Article  CAS  Google Scholar 

  6. A. Tharakan, I.T. Norton, P.J. Fryer, S. Bakalis, J. Food Sci. 75(6), E339–E346 (2010)

    Article  CAS  Google Scholar 

  7. R.G. Lentle, K.J. Stafford, Y. Hemar, P. Aseruvujanon, D.J. Mellor, P.J. Moughan, Aust. J. Zool. 55(6), 383–389 (2008)

    Article  Google Scholar 

  8. T. Takahashi, Y. Furuichi, T. Mizuno et al., J. Sci. Food Agric. 89(2), 245–250 (2009)

    Article  CAS  Google Scholar 

  9. L. Marciani, P.A. Gowland, R.C. Spiller et al., Am. J. Physiol. Gastrointest. Liver Physiol. 280(6), G1227–G1233 (2001)

    CAS  Google Scholar 

  10. W.B. Cannon, Am. J. Physiol. 1, 359–382 (1898)

    Google Scholar 

  11. J.D. Holdsworth, K. Johnson, G. Mascall, R.G. Roulston, P.A. Tomlinson, Anaesthesia 35(7), 641–650 (1980)

    Article  CAS  Google Scholar 

  12. Nutrient Requirements of Swine: 10th Revised Edition. (The National Academies Press, Washington D.C., 1998)

  13. A. O. A. C. (AOAC), Official methods of analysis. (Association of Official Analytical Chemists, Washington DC, 2000)

  14. AACC, (American Association of Cereal Chemists, St. Paul, Minnesota, 1995)

  15. A.A. Perdon, B.P. Marks, T.J. Siebenmorgen, N.B. Reid, Cereal Chem. 74(6), 864–867 (1997)

    Article  CAS  Google Scholar 

  16. A.A. Perdon, T.J. Siebenmorgen, R.W. Buescher, E.E. Gbur, J. Food Sci. 64(5), 828–832 (1999)

    Article  CAS  Google Scholar 

  17. R.G. Lentle, P.W.M. Janssen, Crit. Rev. Food Sci. Nutr. 50(2), 130–145 (2010)

    Article  CAS  Google Scholar 

  18. C.L. Dikeman, K.A. Barry, M.R. Murphy, J.G.C. Fahey, Nutr. Res. 27(1), 56–65 (2007)

    Article  CAS  Google Scholar 

  19. R. Lentle, P. Janssen, K. Goh, P. Chambers, C. Hulls, Dig. Dis. Sci. 55(12), 3349–3360 (2010)

    Article  Google Scholar 

  20. R.G. Lentle, K.J. Stafford, M.S. Kennedy, S.J. Haslett, Physiol. Biochem. Zool. 75(6), 572–582 (2002)

    Article  Google Scholar 

  21. G. Bornhorst, N. Ströbinger, S. M. Rutherfurd, R. P. Singh and P. Moughan, Food Biophys. 8(1), 12–23 (2013)

  22. E.T. Champagne, K.L. Bett-Garber, B.T. Vinyard et al., Cereal Chem. 76(5), 764–771 (1999)

    Article  CAS  Google Scholar 

  23. J.F. Steffe, Rheological methods in food process engineering (Freeman Press, East Lansing, 1996)

    Google Scholar 

  24. T. Takahashi, T. Sakata, J. Nutr. 132(5), 1026–1030 (2002)

    CAS  Google Scholar 

  25. T. Takahashi, M. Goto, T. Sakata, Br. J. Nutr. 91(06), 867–872 (2004)

    Article  CAS  Google Scholar 

  26. L. Marciani, P.A. Gowland, R.C. Spiller et al., J. Nutr. 130(1), 122–127 (2000)

    CAS  Google Scholar 

  27. H.N. Johansen, K.E.B. Knudsen, B. Sandström, F. Skjøth, Br. J. Nutr. 75(03), 339–351 (1996)

    Article  CAS  Google Scholar 

  28. A. Pal, B. Abrahamsson and J. G. Brasseur, J. Biomech. 40(6), 1202–1210 (2007)

    Google Scholar 

  29. W.B. Cannon, C.W. Lieb, Am. J. Physiol. 29(2), 267–273 (1911)

    Google Scholar 

  30. K.A. Kelly, Am. J. Physiol. Gastrointest. Liver Physiol. 239(2), G71–G76 (1980)

    CAS  Google Scholar 

  31. P.J. Collins, L.A. Houghton, N.W. Read et al., Gut 32(6), 615–619 (1991)

    Article  CAS  Google Scholar 

  32. C.L. Dikeman, M.R. Murphy, G.C. Fahey, J. Anim, Physiol. Anim. Nutr. 91(3–4), 139–147 (2007)

    Article  CAS  Google Scholar 

  33. C.L. Dikeman, M.R. Murphy, G.C. Fahey, J. Nutr. 136(4), 913–919 (2006)

    CAS  Google Scholar 

  34. S.B. Ross-Murphy, J. Rheol. 39(6), 1451–1463 (1995)

    Article  CAS  Google Scholar 

  35. R. G. Lentle, K. J. Stafford, K. Bekkour, P. Aserevujanon, S. Sylvester and Y. Hemar, J. Anim. Physiol. Anim. Nutr. 94(4), 495–504 (2010)

  36. J. Widjaja, University of California, Davis, (2010)

  37. T.A. Bell, J.L. Etchells, J. Food Sci. 26(1), 84–90 (1961)

    Article  Google Scholar 

  38. T.A. Bell, L.J. Turney, J.L. Etchells, J. Food Sci. 37(3), 446–449 (1972)

    Article  CAS  Google Scholar 

  39. E. Seidel, M. Long, Crash Course: Gastrointestinal System (Elsevier, Philadelphia, 2006)

    Google Scholar 

  40. L.W. Olthoff, A. Van Der Bilt, F. Bosman, H.H. Kleizen, Arch. Oral Biol. 29(11), 899–903 (1984)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Paul Singh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bornhorst, G.M., Ferrua, M.J., Rutherfurd, S.M. et al. Rheological Properties and Textural Attributes of Cooked Brown and White Rice During Gastric Digestion in Vivo. Food Biophysics 8, 137–150 (2013). https://doi.org/10.1007/s11483-013-9288-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-013-9288-1

Keywords

Navigation