Skip to main content
Log in

Effect of Different Gums on Features of 3D Printed Object Based on Vitamin-D Enriched Orange Concentrate

  • ORIGINAL ARTICLE
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

This study examined the effects of different gums viz. gum arabic (GA), guar gum (GG), k-carrageenan gum (KG), and xanthan gum (XG) on rheological and 3D printing characteristics of vitamin D (Vit D) enriched orange concentrate (OC) wheat starch (WS) blends. The textural and microstructural properties of printed objects from above mixture were evaluated and compared. The addition of gums induced an increase in apparent viscosity, storage modulus (G′), and loss modulus (G″) of the OC-WS mixtures, while GA decreased the apparent viscosity and G′. Nuclear magnetic resonance (NMR) analysis of 3D printed samples revealed that the movement of transverse time (T2) toward closer to 0 ms indicated an increase in immobilized and bound water populations suggesting the gel formation. The slight shift toward shorter wavelength in FT-IR results for the broadband centered around 3400 cm−1 after addition of gums possibly caused an increase of G′ and load bearing capacity of the blends. 3D printing characteristics revealed that the objects printed using KG containing blend possessed maximum fidelity to the target geometry and good loading bearing capacity, preventing collapsing over time due to the proper G′ value. At tanδ of 0.238, OC-WS-KG mixture achieved the best printing condition. Higher tanδ of GA (0.038) containing samples led to an unwanted collapse of the printed constructs. The objects printed using KG also exhibited the smoothest visible surface as well as microstructure and best mastication properties. Considering the studied features, vitamin D enriched OC with WS-KG was found to be the best match for orange fruit concentrate-based 3D food printing. This work demonstrates the novel ways to develop fortified 3D printed foods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. U.M. Dilberoglu, B. Gharehpapagh, U. Yaman, M. Dolen, Procedia Manuf. 11, 545–554 (2017)

    Article  Google Scholar 

  2. C. Severini, A. Derossi, J. Clin. Gastroenterol. 50, S175–S178 (2016)

    Article  PubMed  Google Scholar 

  3. J. Sun, W. Zhou, D. Huang, J.Y.H. Fuh, G.S. Hong, Food Bioprocess Technol. 8(8), 1605–1615 (2015)

    Article  CAS  Google Scholar 

  4. M. Lanaro, D.P. Forrestal, S. Scheurer, D.J. Slinger, S. Liao, S.K. Powell, M.A. Woodruff, J. Food Eng. 215, 13–22 (2017)

    Article  CAS  Google Scholar 

  5. R. Coda, C.G. Rizzello, J.A. Curiel, K. Poutanen, K. Katina, Innovative Food Sci. Emerg. Technol. 25, 19–27 (2014)

    Article  CAS  Google Scholar 

  6. A.Z. Kouzani, S. Adams, D.J. Whyte, et al., In The International Conference of Design and Technology (Geelong, Australia, 2017), pp. 23–29

    Google Scholar 

  7. J.I. Lipton, M. Cutler, F. Nigl, D. Cohen, H. Lipson, Trends Food Sci. Technol. 43(1), 114–123 (2015)

    Article  CAS  Google Scholar 

  8. J.I. Lipton, Curr. Opin. Biotechnol. 44, 198–201 (2017)

    Article  CAS  PubMed  Google Scholar 

  9. T.A. Brunner, M. Delley, C. Denkel, Food Qual. Prefer. (2017)

  10. F.C. Godoi, S. Prakash, B.R. Bhandari, J. Food Eng. 179, 44–54 (2016)

    Article  Google Scholar 

  11. G. Li, Food and Machinery 31 (1), 231–234 (2015)

  12. C. Severini, A. Derossi, I. Ricci, R. Caporizzi, A. Fiore, J. Food Eng. 220, 89–100 (2018)

    Article  CAS  Google Scholar 

  13. L. Wang, M. Zhang, B. Bhandari, C. Yang, J. Food Eng. 220, 101–108 (2018)

    Article  CAS  Google Scholar 

  14. Z. Liu, M. Zhang, B. Bhandari, C. Yang, J. Food Eng. 220, 76–82 (2018)

    Article  Google Scholar 

  15. C. Le Tohic, J.J. O'Sullivan, K.P. Drapala, et al., J. Food Eng. (2017)

  16. C. Le Tohic, J.J. O'Sullivan, K.P. Drapala, et al., J. Food Eng. 220, 56–64 (2018)

    Article  CAS  Google Scholar 

  17. F. Yang, M. Zhang, S. Prakash, Y. Liu, Innovative Food Sci. Emerg. Technol. (2018)

  18. S. Holland, T. Foster, W. MacNaughtan, C. Tuck, J. Food Eng. 220, 12–19 (2018)

    Article  CAS  Google Scholar 

  19. Z. Liu, M. Zhang, B. Bhandari and Y. Wang, Trends in Food Science & Technology 69 (Part A), 83–94 (2017)

  20. H.W. Kim, H. Bae, H.J. Park, J. Food Eng. 220, 28–37 (2018)

    Article  Google Scholar 

  21. V. Wong, A Guide to All the Food That's Fit to 3D Print (So Far). (Bloomberg the Company & Its Products, 2014), https://www.bloomberg.com/news/articles/2014-01-28/all-the-food-thats-fit-to-3d-print-fromchocolates-to-pizza. Accessed 8 Feb 2018

  22. F. Pallottino, L. Hakola, C. Costa, F. Antonucci, S. Figorilli, A. Seisto, P. Menesatti, Food Bioprocess Technol. 9(5), 725–733 (2016)

    Article  Google Scholar 

  23. M.D. Alvarez, B. Herranz, R. Fuentes, F.J. Cuesta, W. Canet, J. Food Process Eng. 40(2) (2017)

  24. P.A. Williams, G.O. Phillips, Encyclopedia of Food Sciences and Nutrition (Second Edition) (Academic Press, Oxford, 2003) pp. 2992-3001

    Google Scholar 

  25. M.A. Rao, In Rheology of Fluid and Semisolid Foods: Principles and Applications (Springer, US, Boston, MA, 2007), pp. 153–222

    Google Scholar 

  26. X. Yao, Q. Xu, D. Tian, N. Wang, Y. Fang, Z. Deng, G.O. Phillips, J. Lu, J. Agric. Food Chem. 61(19), 4639–4645 (2013)

    Article  CAS  PubMed  Google Scholar 

  27. P.S. Gils, D. Ray, P.K. Sahoo, Int. J. Biol. Macromol. 45(4), 364–371 (2009)

    Article  CAS  PubMed  Google Scholar 

  28. M.M. Altayan, T. Al Darouich, F. Karabet, Food Biophys. 12(4), 397–403 (2017)

    Article  Google Scholar 

  29. L.M. Fonseca, A.K. Henkes, G.P. Bruni, et al. Food Biophys. (2018)

  30. E. Hasanvand, M. Fathi, A. Bassiri, M. Javanmard, R. Abbaszadeh, Food Bioprod. Process. 96, 264–277 (2015)

    Article  CAS  Google Scholar 

  31. L.R. Gerits, B. Pareyt, J.A. Delcour, LWT Food Sci. Technol. 63(1), 361–366 (2015)

    Article  CAS  Google Scholar 

  32. K.D. Mattice, A.G. Marangoni, Food Chem. 243, 396–402 (2018)

    Article  CAS  PubMed  Google Scholar 

  33. C. Severini, D. Azzollini, M. Albenzio, A. Derossi, Food Res. Int. 106, 666–676 (2018)

    Article  CAS  PubMed  Google Scholar 

  34. F. Yang, M. Zhang, B. Bhandari and Y. Liu, LWT-Food Science and Technology 87 (Supplement C), 67–76 (2018)

  35. R. Zhang, X. Muyiduli, D. Su, et al., Nutrients 9(5) (2017)

  36. V. Povoroznyuk, N. Balatska, V. Dotsenko, L. Synyeok, V. Havrysh, O. Bortnichuk, Maturitas 81(1), 219 (2015)

    Google Scholar 

  37. L.J. Black, J. Walton, A. Flynn, M. Kiely, Public Health Nutr. 17(4), 721–731 (2014)

    Article  PubMed  Google Scholar 

  38. J. Jakobsen, P. Knuthsen, Food Chem. 148, 170–175 (2014)

    Article  CAS  PubMed  Google Scholar 

  39. X. Yan, J.S. Thomson, R. Zhao, et al., Nutrients 9(8) (2017)

  40. A. Spiro, J.L. Buttriss, Nutr. Bull. 39(4), 322–350 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. V. Tangpricha, P. Koutkia, S.M. Rieke, T.C. Chen, A.A. Perez, M.F. Holick, Am. J. Clin. Nutr. 77(6), 1478–1483 (2003)

    Article  CAS  PubMed  Google Scholar 

  42. R.S.M. Azam, M. Zhang, A.S. Mujumdar, Y. Wang, Dry. Technol. 32(6), 657–666 (2014)

    Article  CAS  Google Scholar 

  43. C. Rondeau-Mouro, M. Cambert, R. Kovrlija, M. Musse, T. Lucas, F. Mariette, Food Bioprocess Technol. 8(4), 777–790 (2014)

    Article  CAS  Google Scholar 

  44. S. Mantihal, S. Prakash, F.C. Godoi, B. Bhandari, Innovative Food Sci. Emerg. Technol. 44, 21–29 (2017)

    Article  Google Scholar 

  45. C. A. Hamilton, G. Alici and M. In het Panhuis, J. Food Eng. 220 (Supplement C), 83–88 (2018)

  46. N.R. Swami Hulle, K. Patruni, P.S. Rao, J. Food Process Eng. 37(4), 375–386 (2014)

    Article  CAS  Google Scholar 

  47. I.G. Mandala, E. Bayas, Food Hydrocoll. 18(2), 191–201 (2004)

    Article  CAS  Google Scholar 

  48. Y. Tao, R. Zhang, W. Xu, Z. Bai, Y. Zhou, S. Zhao, Y. Xu, D. Yu, Food Hydrocoll. 52, 923–933 (2016)

    Article  CAS  Google Scholar 

  49. M. Chaisawang, M. Suphantharika, Food Hydrocoll. 20(5), 641–649 (2006)

    Article  CAS  Google Scholar 

  50. M.D. Alvarez, C. Fernández, W. Canet, J. Sci. Food Agric. 89(12), 2115–2127 (2009)

    Article  CAS  Google Scholar 

  51. C. Lascombes, G. Agoda-Tandjawa, P. Boulenguer, C. le Garnec, M. Gilles, S. Mauduit, P. Barey, V. Langendorff, Food Hydrocoll. 66, 176–189 (2017)

    Article  CAS  Google Scholar 

  52. A. Chappellaz, M. Alexander, M. Corredig, Food Biophysics 5(2), 138–147 (2010)

    Article  Google Scholar 

  53. J. Parada, J.M. Aguilera, C. Brennan, J. Food Eng. 103(3), 324–332 (2011)

    Article  CAS  Google Scholar 

  54. K. Prasad, Y. Kaneko, J.-i. Kadokawa, Macromol. Biosci. 9(4), 376–382 (2009)

    Article  CAS  PubMed  Google Scholar 

  55. B. Ozel, S.S. Uguz, M. Kilercioglu, L. Grunin, M.H. Oztop, J. Food Process Eng. 40(3) (2017)

  56. S. Fang, J. Wang, X. Xu, X. Zuo, Food Biophysics (2018)

  57. X. Wang, G.R. Ziegler, Food Biophysics 4(2), 119–125 (2009)

    Article  CAS  Google Scholar 

  58. A.C.S. Talari, M.A.G. Martinez, Z. Movasaghi, S. Rehman, I.U. Rehman, Appl. Spectrosc. Rev. 52(5), 456–506 (2016)

    Article  CAS  Google Scholar 

  59. A. Heidari, Journal of Biometrics & Biostatistics 07 (02) (2016)

  60. X. Zhang, H. Gao, C. Wang, A. Qayum, Z. Mu, Z. Gao, Z. Jiang, Food Chem. 257, 279–288 (2018)

    Article  CAS  PubMed  Google Scholar 

  61. J. Xiong, Q. Li, Z. Shi, J. Ye, Food Res. Int. 100(Pt 1), 858–863 (2017)

    Article  CAS  PubMed  Google Scholar 

  62. M. Meerts, R. Cardinaels, F. Oosterlinck, C.M. Courtin, P. Moldenaers, Food Biophysics 12(2), 151–163 (2017)

    Article  Google Scholar 

  63. C.-E. Brunchi, M. Bercea, S. Morariu, M. Dascalu, J. Polym. Res. 23(7) (2016)

  64. B. Sołowiej, A. Dylewska, D. Kowalczyk, M. Sujka, M. Tomczyńska-Mleko, S. Mleko, Eur. Food Res. Technol. 242(9), 1577–1585 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support by China State Key Laboratory of Food Science and Technology Innovation Project (Contract No. SKLF-ZZA-201706), Jiangsu Province (China) “Collaborative Innovation Center for Food Safety and Quality Control” Industry Development Program, Jiangsu Province Key Laboratory Project of Advanced Food Manufacturing Equipment and Technology (No. FMZ201803), which have enabled us to carry out this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azam, R.S.M., Zhang, M., Bhandari, B. et al. Effect of Different Gums on Features of 3D Printed Object Based on Vitamin-D Enriched Orange Concentrate. Food Biophysics 13, 250–262 (2018). https://doi.org/10.1007/s11483-018-9531-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-018-9531-x

Keywords

Navigation