Skip to main content
Log in

Triacylglycerol lipases of the yeast

  • Review
  • Published:
Frontiers in Biology

Abstract

All eukaryotes including the yeast contain a lipid storage compartment which is named lipid particle, lipid droplet or oil body. Lipids accumulating in this subcellular fraction serve as a depot of energy and building blocks for membrane lipid synthesis. In the yeast, the major storage lipids are triacylglycerols (TGs) and steryl esters (SEs). An important step in the life cycle of these non-polar lipids is their mobilization from their site of storage and channeling of their degradation components to the appropriate metabolic pathways. A key step in this mobilization process is hydrolysis of TG and SE which is accomplished by lipases and hydrolases. In this review, we describe our recent knowledge of TG lipases from the yeast based on biochemical, molecular biological and cell biological information. We report about recent findings addressing the versatile role of TG lipases in lipid metabolism, and discuss non-polar lipid homeostasis and its newly discovered links to various cell biological processes in the yeast.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abouakil N, Mas E, Bruneau N, Benajiba A, Lombardo D (1993). Bile salt-dependent lipase biosynthesis in rat pancreatic AR 4-2 J cells. Essential requirement of N-linked oligosaccharide for secretion and expression of a fully active enzyme. J Biol Chem, 268(34): 25755–25763

    PubMed  CAS  Google Scholar 

  • Abraham P R, Mulder A, Van’ t Riet J, Planta R J, Raué H A (1992). Molecular cloning and physical analysis of an 8.2 kb segment of chromosome XI of Saccharomyces cerevisiae reveals five tightly linked genes. Yeast, 8(3): 227–238

    Article  PubMed  CAS  Google Scholar 

  • Akoh C C, Lee G C, Shaw J F (2004). Protein engineering and applications of Candida rugosa lipase isoforms. Lipids, 39(6): 513–526

    Article  PubMed  CAS  Google Scholar 

  • Alam M, Vance D E, Lehner R (2002). Structure-function analysis of human triacylglycerol hydrolase by site-directed mutagenesis: identification of the catalytic triad and a glycosylation site. Biochemistry, 41(21): 6679–6687

    Article  PubMed  CAS  Google Scholar 

  • Aloulou A, Rodriguez J A, Puccinelli D, Mouz N, Leclaire J, Leblond Y, Carrière F (2007). Purification and biochemical characterization of the LIP2 lipase from Yarrowia lipolytica. Biochim Biophys Acta, 1771(2): 228–237

    PubMed  CAS  Google Scholar 

  • Athenstaedt K, Daum G (2003). YMR313c/TGL3 encodes a novel triacylglycerol lipase located in lipid particles of Saccharomyces cerevisiae. J Biol Chem, 278(26): 23317–23323

    Article  PubMed  CAS  Google Scholar 

  • Athenstaedt K, Daum G (2005). Tgl4p and Tgl5p, two triacylglycerol lipases of the yeast Saccharomyces cerevisiae are localized to lipid particles. J Biol Chem, 280(45): 37301–37309

    Article  PubMed  CAS  Google Scholar 

  • Athenstaedt K, Daum G (2006). The life cycle of neutral lipids: synthesis, storage and degradation. Cell Mol Life Sci, 63(12): 1355–1369

    Article  PubMed  CAS  Google Scholar 

  • Athenstaedt K, Jolivet P, Boulard C, Zivy M, Negroni L, Nicaud J M, Chardot T (2006). Lipid particle composition of the yeast Yarrowia lipolytica depends on the carbon source. Proteomics, 6(5): 1450–1459

    Article  PubMed  CAS  Google Scholar 

  • Athenstaedt K, Zweytick D, Jandrositz A, Kohlwein S D, Daum G (1999). Identification and characterization of major lipid particle proteins of the yeast Saccharomyces cerevisiae. J Bacteriol, 181(20): 6441–6448

    PubMed  CAS  Google Scholar 

  • Babour A, Beckerich JM, Gaillardin C (2004). Identification of an UDPGlc: glycoprotein glucosyltransferase in the yeast Yarrowia lipolytica. Yeast, 21(1): 11–24

    Article  PubMed  CAS  Google Scholar 

  • Beopoulos A, Chardot T, Nicaud J M (2009). Yarrowia lipolytica: A model and a tool to understand the mechanisms implicated in lipid accumulation. Biochimie, 91(6): 692–696

    Article  PubMed  CAS  Google Scholar 

  • Beopoulos A, Mrozova Z, Thevenieau F, Le Dall M T, Hapala I, Papanikolaou S, Chardot T, Nicaud J M (2008). Control of lipid accumulation in the yeast Yarrowia lipolytica. Appl Environ Microbiol, 74(24): 7779–7789

    Article  PubMed  CAS  Google Scholar 

  • Berglund P (2001). Controlling lipase enantioselectivity for organic synthesis. Biomol Eng, 18(1): 13–22

    Article  PubMed  CAS  Google Scholar 

  • Bertolini MC, Laramée L, Thomas D Y, Cygler M, Schrag J D, Vernet T (1994). Polymorphism in the lipase genes of Geotrichum candidum strains. Eur J Biochem/FEBS, 219(1–2): 119–25

    Article  CAS  Google Scholar 

  • Bordes F, Barbe S, Escalier P, Mourey L, André I, Marty A, Tranier S (2010). Exploring the conformational states and rearrangements of Yarrowia lipolytica lipase. Biophys J, 99(7): 2225–2234

    Article  PubMed  CAS  Google Scholar 

  • Bornscheuer U T, Altenbuchner J, Meyer H H (1999). Directed evolution of an esterase: screening of enzyme libraries based on pHindicators and a growth assay. Bioorg Med Chem, 7(10): 2169–2173

    Article  PubMed  CAS  Google Scholar 

  • Bornscheuer U T, Bessler C, Srinivas R, Krishna S H (2002). Optimizing lipases and related enzymes for efficient application. Trends Biotechnol, 20(10): 433–437

    Article  PubMed  CAS  Google Scholar 

  • Brady L, Brzozowski A M, Derewenda Z S, Dodson E, Dodson G, Tolley S, Turkenburg J P, Christiansen L, Huge-Jensen B, Norskov L, Thim L, Menge U (1990). A serine protease triad forms the catalytic centre of a triacylglycerol lipase. Nature, 343(6260): 767–770

    Article  PubMed  CAS  Google Scholar 

  • Brocca S, Persson M, Wehtje E, Adlercreutz P, Alberghina L, Lotti M (2000). Mutants provide evidence of the importance of glycosydic chains in the activation of lipase 1 from Candida rugosa. Protein Sci, 9(5): 985–990

    Article  PubMed  CAS  Google Scholar 

  • Brookheart R T, Michel C I, Schaffer J E (2009). As a matter of fat. Cell Metab, 10(1): 9–12

    Article  PubMed  CAS  Google Scholar 

  • Brzozowski A M, Derewenda U, Derewenda Z S, Dodson G G, Lawson D M, Turkenburg J P, Bjorkling F, Huge-Jensen B, Patkar S A, Thim L (1991). A model for interfacial activation in lipases from the structure of a fungal lipase-inhibitor complex. Nature, 351(6326): 491–494

    Article  PubMed  CAS  Google Scholar 

  • Clausen MK, Christiansen K, Jensen P K, Behnke O (1974). Isolation of lipid particles from baker’s yeast. FEBS Lett, 43(2): 176–179

    Article  PubMed  CAS  Google Scholar 

  • Coleman R A, Lee D P (2004). Enzymes of triacylglycerol synthesis and their regulation. Prog Lipid Res, 43(2): 134–176

    Article  PubMed  CAS  Google Scholar 

  • Czabany T, Athenstaedt K, Daum G (2007). Synthesis, storage and degradation of neutral lipids in yeast. Biochim Biophys Acta, 1771(3): 299–309

    PubMed  CAS  Google Scholar 

  • Czabany T, Wagner A, Zweytick D, Lohner K, Leitner E, Ingolic E, Daum G (2008). Structural and biochemical properties of lipid particles from the yeast Saccharomyces cerevisiae. J Biol Chem, 283(25): 17065–17074

    Article  PubMed  CAS  Google Scholar 

  • Dartois V, Baulard A, Schanck K, Colson C (1992). Cloning, nucleotide sequence and expression in Escherichia coli of a lipase gene from Bacillus subtilis 168. Biochim Biophys Acta, 1131(3): 253–260

    PubMed  CAS  Google Scholar 

  • Daum G, Lees N D, Bard M, Dickson R (1998). Biochemistry, cell biology and molecular biology of lipids of Saccharomyces cerevisiae. Yeast, 14(16): 1471–1510

    Article  PubMed  CAS  Google Scholar 

  • Daum G, Paltauf F (1980). Triacylglycerols as fatty acid donors for membrane phospholipid biosynthesis in yeast. Monatsh Chem/Chemical Monthly, 111(2): 355–363

    Article  CAS  Google Scholar 

  • Daum G, Tuller G, Nemec T, Hrastnik C, Balliano G, Cattel L, Milla P, Rocco F, Conzelmann A, Vionnet C, Kelly D E, Kelly S, Schweizer E, Schüller H J, Hojad U, Greiner E, Finger K (1999). Systematic analysis of yeast strains with possible defects in lipid metabolism. Yeast, 15(7): 601–614

    Article  PubMed  CAS  Google Scholar 

  • Desfougères T, Haddouche R, Fudalej F, Neuvéglise C, Nicaud J M (2010). SOA genes encode proteins controlling lipase expression in response to triacylglycerol utilization in the yeast Yarrowia lipolytica. FEMS Yeast Res, 10(1): 93–103

    Article  PubMed  Google Scholar 

  • Dircks L K, Ke J, Sul H S (1999). A conserved seven amino acid stretch important for murine mitochondrial glycerol-3-phosphate acyltransferase activity. Significance of arginine 318 in catalysis. J Biol Chem, 274(49): 34728–34734

    Article  PubMed  CAS  Google Scholar 

  • Domínguez de María P, Sánchez-Montero J M, Sinisterra J V, Alcántara A R (2006). Understanding Candida rugosa lipases: an overview. Biotechnol Adv, 24(2): 180–196

    Article  PubMed  Google Scholar 

  • Ferrer P, Montesinos J L, Valero F, Solà C (2001). Production of native and recombinant lipases by Candida rugosa: a review. Appl Biochem Biotechnol, 95(3): 221–255

    Article  PubMed  CAS  Google Scholar 

  • Fickers P, Benetti P H, Waché Y, Marty A, Mauersberger S, Smit M S, Nicaud J M (2005a). Hydrophobic substrate utilisation by the yeast Yarrowia lipolytica, and its potential applications. FEMS Yeast Res, 5(6–7): 527–543

    Article  PubMed  CAS  Google Scholar 

  • Fickers P, Fudalej F, Le Dall MT, Casaregola S, Gaillardin C, Thonart P, Nicaud J M (2005b). Identification and characterisation of LIP7 and LIP8 genes encoding two extracellular triacylglycerol lipases in the yeast Yarrowia lipolytica. Fungal Genet Biol, 42(3): 264–274

    Article  PubMed  CAS  Google Scholar 

  • Fjerbaek L, Christensen K V, Norddahl B (2009). A review of the current state of biodiesel production using enzymatic transesterification. Biotechnol Bioeng, 102(5): 1298–1315

    Article  PubMed  CAS  Google Scholar 

  • Ghosh A K, Ramakrishnan G, Rajasekharan R (2008). YLR099C (ICT1) encodes a soluble Acyl-CoA-dependent lysophosphatidic acid acyltransferase responsible for enhanced phospholipid synthesis on organic solvent stress in Saccharomyces cerevisiae. J Biol Chem, 283(15): 9768–9775

    Article  PubMed  CAS  Google Scholar 

  • Haemmerle G, Zimmermann R, Hayn M, Theussl C, Waeg G, Wagner E, Sattler W, Magin T M, Wagner E F, Zechner R (2002). Hormonesensitive lipase deficiency in mice causes diglyceride accumulation in adipose tissue, muscle, and testis. J Biol Chem, 277(7): 4806–4815

    Article  PubMed  CAS  Google Scholar 

  • Ham H J, Rho H J, Shin S K, Yoon H J (2010). The TGL2 gene of Saccharomyces cerevisiae encodes an active acylglycerol lipase located in the mitochondria. J Biol Chem, 285(5): 3005–3013

    Article  PubMed  CAS  Google Scholar 

  • Heath R J, Rock C O (1998). A conserved histidine is essential for glycerolipid acyltransferase catalysis. J Bacteriol, 180(6): 1425–1430

    PubMed  CAS  Google Scholar 

  • Heier C, Taschler U, Rengachari S, Oberer M, Wolinski H, Natter K, Kohlwein S D, Leber R, Zimmermann R (2010). Identification of Yju3p as functional orthologue of mammalian monoglyceride lipase in the yeast Saccharomycescerevisiae. Biochim Biophys Acta, 1801(9): 1063–1071

    PubMed  CAS  Google Scholar 

  • Huge-Jensen B, Galluzzo D R, Jensen R G (1988). Studies on free and immobilized lipases from Mucor miehei. J Am Oil Chem Soc, 65(2): 905–910

    Article  CAS  Google Scholar 

  • Hunkova Z, Fencl A (1978). Toxic effects of fatty acids on yeast cells: possible mechanisms of action. Biotechnol Bioeng, 20(8): 1235–1247

    Article  PubMed  CAS  Google Scholar 

  • Hunkova Z, Fencl Z (1977). Toxic effects of fatty acids on yeast cells: dependence of inhibitory effects on fatty acid concentration. Biotechnol Bioeng, 19(11): 1623–1641

    Article  PubMed  CAS  Google Scholar 

  • Jandrositz A, Petschnigg J, Zimmermann R, Natter K, Scholze H, Hermetter A, Kohlwein S D, Leber R (2005). The lipid droplet enzyme Tgl1p hydrolyzes both steryl esters and triglycerides in the yeast, Saccharomyces cerevisiae. Biochim Biophys Acta, 1735(1): 50–58

    PubMed  CAS  Google Scholar 

  • Jenkins C M, Mancuso D J, Yan W, Sims H F, Gibson B, Gross R W (2004). Identification, cloning, expression, and purification of three novel human calcium-independent phospholipase A2 family members possessing triacylglycerol lipase and acylglycerol transacylase activities. J Biol Chem, 279(47): 48968–48975

    Article  PubMed  CAS  Google Scholar 

  • Jolivet P, Bordes F, Fudalej F, Cancino M, Vignaud C, Dossat V, Burghoffer C, Marty A, Chardot T, Nicaud J M (2007). Analysis of Yarrowia lipolytica extracellular lipase Lip2p glycosylation. FEMS Yeast Res, 7(8): 1317–1327

    Article  PubMed  CAS  Google Scholar 

  • Kim K K, Song H K, Shin D H, Hwang K Y, Suh S W (1997). The crystal structure of a triacylglycerol lipase from Pseudomonas cepacia reveals a highly open conformation in the absence of a bound inhibitor. Structure, 5(2): 173–185

    Article  PubMed  CAS  Google Scholar 

  • Köffel R, Tiwari R, Falquet L, Schneiter R (2005). The Saccharomyces cerevisiae YLL012/YEH1, YLR020/YEH2, and TGL1 genes encode a novel family of membrane-anchored lipases that are required for steryl ester hydrolysis. Mol Cell Biol, 25(5): 1655–1668

    Article  PubMed  Google Scholar 

  • Kohlwein S D (2010). Triacylglycerol homeostasis: insights from yeast. J Biol Chem, 285(21): 15663–15667

    Article  PubMed  CAS  Google Scholar 

  • Kurat C F, Natter K, Petschnigg J, Wolinski H, Scheuringer K, Scholz H, Zimmermann R, Leber R, Zechner R, Kohlwein S D (2006). Obese yeast: triglyceride lipolysis is functionally conserved from mammals to yeast. J Biol Chem, 281(1): 491–500

    Article  PubMed  CAS  Google Scholar 

  • Kurat C F, Wolinski H, Petschnigg J, Kaluarachchi S, Andrews B, Natter K, Kohlwein S D (2009). Cdk1/Cdc28-dependent activation of the major triacylglycerol lipase Tgl4 in yeast links lipolysis to cell-cycle progression. Mol Cell, 33(1): 53–63

    Article  PubMed  CAS  Google Scholar 

  • Lass A, Zimmermann R, Oberer M, Zechner R (2011). Lipolysis-a highly regulated multi-enzyme complex mediates the catabolism of cellular fat stores. Prog Lipid Res, 50(1): 14–27

    Article  PubMed  CAS  Google Scholar 

  • Leber R, Zinser E, Zellnig G, Paltauf F, Daum G (1994). Characterization of lipid particles of the yeast, Saccharomyces cerevisiae. Yeast, 10(11): 1421–1428

    Article  PubMed  CAS  Google Scholar 

  • Lewin T M, Wang P, Coleman R A (1999). Analysis of amino acid motifs diagnostic for the sn-glycerol-3-phosphate acyltransferase reaction. Biochemistry, 38(18): 5764–5771

    Article  PubMed  CAS  Google Scholar 

  • Liu W S, Pan X X, Jia B, Zhao H Y, Xu L, Liu Y, Yan Y J (2010). Surface display of active lipases Lip7 and Lip8 from Yarrowia lipolytica on Saccharomyces cerevisiae. Appl Microbiol Biotechnol, 88(4): 885–891

    Article  PubMed  CAS  Google Scholar 

  • Lotti M, Grandori R, Fusetti F, Longhi S, Brocca S, Tramontano A, Alberghina L (1993). Cloning and analysis of Candida cylindracea lipase sequences. Gene, 124(1): 45–55

    Article  PubMed  CAS  Google Scholar 

  • Martinelle M, Holmquist M, Hult K (1995). On the interfacial activation of Candida antarctica lipase A and B as compared with Humicola lanuginosa lipase. Biochim Biophys Acta, 1258(3): 272–276

    PubMed  Google Scholar 

  • McPartland J M, Matias I, Di Marzo V, Glass M (2006). Evolutionary origins of the endocannabinoid system. Gene, 370: 64–74

    Article  PubMed  CAS  Google Scholar 

  • Mignery G A, Pikaard C S, Park WD (1988). Molecular characterization of the patatin multigene family of potato. Gene, 62(1): 27–44

    Article  PubMed  CAS  Google Scholar 

  • Murzin A G, Brenner S E, Hubbard T, Chothia C (1995). SCOP: a structural classification of proteins database for the investigation of sequences and structures. J Mol Biol, 247(4): 536–540

    PubMed  CAS  Google Scholar 

  • Najjar A, Robert S, Guérin C, Violet-Asther M, Carrière F (2010). Quantitative study of lipase secretion, extracellular lipolysis, and lipid storage in the yeast Yarrowia lipolytica grown in the presence of olive oil: analogies with lipolysis in humans. Appl Microbiol Biotechnol, 89(6): 1947–1962

    Article  PubMed  Google Scholar 

  • Ollis D L, Cheah E, Cygler M, Dijkstra B, Frolow F, Franken SM, Harel M, Remington S J, Silman I, Schrag J, Sussman J L, Verschueren K H G, Goldman A (1992). The α/β hydrolase fold. Protein Eng, 5(3): 197–211

    Article  PubMed  CAS  Google Scholar 

  • Osuga J, Ishibashi S, Oka T, Yagyu H, Tozawa R, Fujimoto A, Shionoiri F, Yahagi N, Kraemer F B, Tsutsumi O, Yamada N (2000). Targeted disruption of hormone-sensitive lipase results in male sterility and adipocyte hypertrophy, but not in obesity. Proc Natl Acad Sci USA, 97(2): 787–792

    Article  PubMed  CAS  Google Scholar 

  • Parks L W, Casey W M (1995). Physiological implications of sterol biosynthesis in yeast. Annu Rev Microbiol, 49(1): 95–116

    Article  PubMed  CAS  Google Scholar 

  • Pignède G, Wang H, Fudalej F, Gaillardin C, Seman M, Nicaud J M (2000b). Characterization of an extracellular lipase encoded by LIP2 in Yarrowia lipolytica. J Bacteriol, 182(10): 2802–2810

    Article  PubMed  Google Scholar 

  • Pignède G, Wang H J, Fudalej F, Seman M, Gaillardin C, Nicaud J M (2000a). Autocloning and amplification of LIP2 in Yarrowia lipolytica. Appl Environ Microbiol, 66(8): 3283–3289

    Article  PubMed  Google Scholar 

  • Rajakumari S, Daum G (2010a). Janus-faced enzymes yeast Tgl3p and Tgl5p catalyze lipase and acyltransferase reactions. Mol Biol Cell, 21(4): 501–510

    Article  PubMed  CAS  Google Scholar 

  • Rajakumari S, Daum G (2010b). Multiple functions as lipase, steryl ester hydrolase, phospholipase, and acyltransferase of Tgl4p from the yeast Saccharomyces cerevisiae. J Biol Chem, 285(21): 15769–15776

    Article  PubMed  CAS  Google Scholar 

  • Rajakumari S, Grillitsch K, Daum G (2008). Synthesis and turnover of non-polar lipids in yeast. Prog Lipid Res, 47(3): 157–171

    Article  PubMed  CAS  Google Scholar 

  • Rajakumari S, Rajasekharan R, Daum G (2010). Triacylglycerol lipolysis is linked to sphingolipid and phospholipid metabolism of the yeast Saccharomyces cerevisiae. Biochim Biophys Acta, 1801(12): 1314–1322

    PubMed  CAS  Google Scholar 

  • Schaffer J E (2003). Lipotoxicity: when tissues overeat. Curr Opin Lipidol, 14(3): 281–287

    Article  PubMed  CAS  Google Scholar 

  • Schmidt R D, Verger R (1998). Lipases: Interfacial enzymes with attractive applications. Angew Chem, 37(12): 1608–1633

    Article  Google Scholar 

  • Schousboe I (1976a). Properties of triacylglycerol lipase in a mitochondrial fraction from baker’s yeast (Saccharomyces cerevisiae). Biochim Biophys Acta, 450(2): 165–174

    PubMed  CAS  Google Scholar 

  • Schousboe I (1976b). Triacylglycerol lipase activity in baker’s yeast (Saccharomyces cerevisiae). Biochim Biophys Acta, 424(3): 366–375

    PubMed  CAS  Google Scholar 

  • Schrag J D, Cygler M (1997). Lipases and alpha/beta hydrolase fold. Methods Enzymol, 284: 85–107

    Article  PubMed  CAS  Google Scholar 

  • Sebban-Kreuzer C, Deprez-Beauclair P, Berton A, Crenon I (2006). High-level expression of nonglycosylated human pancreatic lipaserelated protein 2 in Pichia pastoris. Protein Expr Purif, 49(2): 284–291

    Article  PubMed  CAS  Google Scholar 

  • Sharma S C (2006). Implications of sterol structure for membrane lipid composition, fluidity and phospholipid asymmetry in Saccharomyces cerevisiae. FEMS Yeast Res, 6(7): 1047–1051

    Article  PubMed  CAS  Google Scholar 

  • Song H T, Jiang Z B, Ma L X (2006). Expression and purification of two lipases from Yarrowia lipolytica AS 2.1216. Protein Expr Purif, 47(2): 393–397

    Article  PubMed  CAS  Google Scholar 

  • Sorger D, Daum G (2003). Triacylglycerol biosynthesis in yeast. Appl Microbiol Biotechnol, 61(4): 289–299

    PubMed  CAS  Google Scholar 

  • Thevenieau F, Le Dall M T, Nthangeni B, Mauersberger S, Marchal R, Nicaud J M (2007). Characterization of Yarrowia lipolytica mutants affected in hydrophobic substrate utilization. Fungal Genet Biol, 44(6): 531–542

    Article  PubMed  CAS  Google Scholar 

  • Thoms S, Debelyy M O, Nau K, Meyer H E, Erdmann R (2008). Lpx1p is a peroxisomal lipase required for normal peroxisome morphology. FEBS J, 275(3): 504–514

    Article  PubMed  CAS  Google Scholar 

  • Turkish A, Sturley S L (2007). Regulation of triglyceride metabolism. I. Eukaryotic neutral lipid synthesis: “Many ways to skin ACAT or a DGAT”. Am J Physiol Gastrointest Liver Physiol, 292(4): G953–G957

    Article  PubMed  CAS  Google Scholar 

  • Ubersax J A, Woodbury E L, Quang P N, Paraz M, Blethrow J D, Shah K, Shokat K M, Morgan D O (2003). Targets of the cyclin-dependent kinase Cdk1. Nature, 425(6960): 859–864

    Article  PubMed  CAS  Google Scholar 

  • Ueda M (2002). Expression of Rhizopus oryzae lipase gene in Saccharomyces cerevisiae. J Mol Catal B: Enzym, 17(3–5): 113–124

    Article  CAS  Google Scholar 

  • Umebayashi K, Nakano A (2003). Ergosterol is required for targeting of tryptophan permease to the yeast plasma membrane. J Cell Biol, 161(6): 1117–1131

    Article  PubMed  CAS  Google Scholar 

  • Unger R H (2003). The physiology of cellular liporegulation. Annu Rev Physiol, 65(1): 333–347

    Article  PubMed  CAS  Google Scholar 

  • Vakhlu J, Kour A (2006). Yeast lipases: enzyme purification, biochemical properties and gene cloning. Electron J Biotechnol, 9(1): 69–85

    Article  CAS  Google Scholar 

  • Van Heusden G P, Nebohâcovâ M, Overbeeke T L, Steensma H Y (1998). The Saccharomyces cerevisiae TGL2 gene encodes a protein with lipolytic activity and can complement an Escherichia coli diacylglycerol kinase disruptant. Yeast, 14(3): 225–232

    Article  PubMed  Google Scholar 

  • Vaughan M, Berger J E, Steinberg D (1964). Hormon-sensitive lipase and monoglyceride lipase activities in adipose tissue. J Biol Chem, 239(2): 401–409

    PubMed  CAS  Google Scholar 

  • Verger R (1997). Interfacial activation of lipases: facts and artefacts. Trends Biotechnol, 15(1): 32–38

    Article  CAS  Google Scholar 

  • Villena J A, Roy S, Sarkadi-Nagy E, Kim K H, Sul H S (2004). Desnutrin, an adipocyte gene encoding a novel patatin domaincontaining protein, is induced by fasting and glucocorticoids: ectopic expression of desnutrin increases triglyceride hydrolysis. J Biol Chem, 279(45): 47066–47075

    Article  PubMed  CAS  Google Scholar 

  • Wagner A, Daum G (2005). Formation and mobilization of neutral lipids in the yeast Saccharomyces cerevisiae. Biochem Soc Trans, 33(Pt 5): 1174–1177

    PubMed  CAS  Google Scholar 

  • Winkler F K, D’Arcy A, Hunziker W (1990). Structure of human pancreatic lipase. Nature, 343(6260): 771–774

    Article  PubMed  CAS  Google Scholar 

  • Xu L, Jiang X, Yang J, Liu Y, Yan Y (2010). Cloning of a novel lipase gene, lipJ08, from Candida rugosa and expression in Pichia pastoris by codon optimization. Biotechnol Lett, 32(2): 269–276

    Article  PubMed  CAS  Google Scholar 

  • Yu M, Lange S, Richter S, Tan T, Schmid R D (2007). High-level expression of extracellular lipase Lip2 from Yarrowia lipolytica in Pichia pastoris and its purification and characterization. Protein Expr Purif, 53(2): 255–263

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann R, Lass A, Haemmerle G, Zechner R (2009). Fate of fat: the role of adipose triglyceride lipase in lipolysis. Biochim Biophys Acta, 1791(6): 494–500

    PubMed  CAS  Google Scholar 

  • Zimmermann R, Strauss J G, Haemmerle G, Schoiswohl G, Birner-Gruenberger R, Riederer M, Lass A, Neuberger G, Eisenhaber F, Hermetter A, Zechner R (2004). Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase. Science, 306(5700): 1383–1386

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Günther Daum.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grillitsch, K., Daum, G. Triacylglycerol lipases of the yeast. Front. Biol. 6, 219–230 (2011). https://doi.org/10.1007/s11515-011-1142-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11515-011-1142-6

Keywords

Navigation