Skip to main content
Log in

Molecular evolution of methanogens based on their metabolic facets

  • Review
  • Published:
Frontiers in Biology

Abstract

The information provided by completely sequenced genomes of methanogens can yield insights into a deeper molecular understanding of evolutionary mechanisms. This review describes the advantages of using metabolic pathways to clarify evolutionary correlation of methanogens with archaea and prokaryotes. Metabolic trees can be used to highlight similarities in metabolic networks related to the biology of methanogens. Metabolic genes are among the most modular in the cell and their genes are expected to travel laterally, even in recent evolution. Phylogenetic analysis of protein superfamilies provides a perspective on the evolutionary history of some key metabolic modules of methanogens. Phage-related genes from distantly related organisms typically invade methanogens by horizontal gene transfer. Metabolic modules in methanogenesis are phylogenetically aligned in closely related methanogens. Reverse order reactions of methanogenesis are achieved in methylotrophic methanogens using metabolic and structural modules of key enzymes. A significant evolutionary process is thought to couple the utilization of heavy metal ions with energetic metabolism in methanogens. Over 30 of methanogens genomes have been sequenced to date, and a variety of databases are being developed that will provide for genome annotation and phylogenomic analysis of methanogens. Into the context of the evolutionary hypothesis, the integration of metabolomic and proteomic data into large-scale mathematical models holds promise for fostering rational strategies for strain improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aguilar D, Aviles F X, Querol E, Sternberg M J (2004). Analysis of phenetic trees based on metabolic capabilites across the three domains of life. J Mol Biol, 340(3): 491–512

    Article  PubMed  CAS  Google Scholar 

  • Apic G, Gough J, Teichmann S A (2001). Domain combinations in archaeal, eubacterial and eukaryotic proteomes. J Mol Biol, 310(2): 311–325

    Article  PubMed  CAS  Google Scholar 

  • Bansal A K (1999). An automated comparative analysis of 17 complete microbial genomes. Bioinformatics, 15(11): 900–908

    Article  PubMed  CAS  Google Scholar 

  • Bapteste E, Brochier C, Boucher Y (2005). Higher-level classification of the Archaea: evolution of methanogenesis and methanogens. Archaea, 1(5): 353–363

    Article  PubMed  CAS  Google Scholar 

  • Beja O, Aravind L, Koonin E V, Suzuki M T, Hadd A, Nguyen L P, Jovanovich S B, Gates C M, Feldman R A, Spudich J L, Spudich E N, DeLong E F (2000). Bacterial rhodopsin: evidence for a new type of phototrophy in the sea. Science, 289(5486): 1902–1906

    Article  PubMed  CAS  Google Scholar 

  • Briones C, Manrubia S C, Lázaro E, Lazcano A, Amils R (2005). Reconstructing evolutionary relationships from functional data: a consistent classification of organisms based on translation inhibition response. Mol Evol Phylogenet, 34(2): 371–381

    Article  CAS  Google Scholar 

  • Brochier C, Forterre P, Gribaldo S (2004). Archaeal phylogeny based on proteins of the transcription and translation machineries: tackling the Methanopyrus kandleri paradox. Genome Biol, 5(3): R17

    Article  PubMed  Google Scholar 

  • Brochier C, Forterre P, Gribaldo S (2005). An emerging phylogenetic core of Archaea: phylogenies of transcription and translation machineries converge following addition of new genome sequences. BMC Evol Biol, 5(1): 36

    Article  PubMed  Google Scholar 

  • Brown J R, Doolittle W F (1997). Archaea and the prokaryote-toeukaryote transition. Microbiol Mol Biol Rev, 61(4): 456–502

    PubMed  CAS  Google Scholar 

  • Brown J R, Douady C J, Italia M J, Marshall WE, Stanhope M J (2001). Universal trees based on large combined protein sequence data sets. Nat Genet, 28(3): 281–285

    Article  PubMed  CAS  Google Scholar 

  • Bult C J, White O, Olsen G J, Zhou L, Fleischmann R D, Sutton G G, Blake J A, FitzGerald L M, Clayton R A, Gocayne J D, Kerlavage A R, Dougherty B A, Tomb J F, Adams M D, Reich C I, Overbeek R, Kirkness E F, Weinstock K G, Merrick J M, Glodek A, Scott J L, Geoghagen N S M, Venter J C, Fuhrmann J L, Nguyen D, Utterback T R, Kelley JM, Peterson J D, Sadow PW, Hanna MC, Cotton MD, Roberts K M, Hurst M A, Kaine B P, Borodovsky M, Klenk H P, Fraser C M, Smith H O, Woese C R, Venter C J (1996). Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii. Science, 273(5278): 1058–1073

    Article  PubMed  CAS  Google Scholar 

  • Chellapandi P (2004). Enzymes and microbiological pretreatments of oil industry wastes for biogas production in batch digesters. In: Pathade G R, Goel P K, ed. Biotechnology in Environmental Management, India: ABD Publishers

    Google Scholar 

  • Chellapandi P (2011). A molecular conception for protein engineering algorithms. Adv Biotech, 10(7): 41–46

    Google Scholar 

  • Chellapandi P, Dhivya C (2010). Overview of microbial metabolomics: A special insight to cyanobacterial methylotrophy. J Adv Develop Res, 1: 59–73

    CAS  Google Scholar 

  • Chellapandi P, Kalaimathy S (2010). Molecular aspects of β-galactosidase production system in Aspergillus genomes. J Adv Develop Res, 1: 81–89

    CAS  Google Scholar 

  • Chellapandi P, Karthigeyan C, Sivaramakrishnan S (2009). Evolutionary implication of protein secondary structure among archaea and bacteria. Internet J Genomics Proteomics, 4(2)

  • Chellapandi P, Prabaharan D, Uma L (2008). A preliminary study on codigestion of ossein factory waste for methane production. EurAsian J Biosci, 2: 110–114

    Google Scholar 

  • Chellapandi P, Prabaharan D, Uma L (2010a). Evaluation of methanogenic activity of biogas plant slurry for monitoring codigestion of ossein factory wastes and cyanobacterial biomass. Appl Biochem Biotechnol, 162(2): 524–535

    Article  PubMed  CAS  Google Scholar 

  • Chellapandi P, Ranjani J (2011). Molecular machinery of CRISPR-CAS system — RNA mediated defense pathway in Prokaryotes. Asian J Biotechnol, 3(4): 329–336

    Article  CAS  Google Scholar 

  • Chellapandi P, Sivaramakrishnan S, Viswanathan MB (2010b). Systems biotechnology: An emerging trend in metabolic engineering of industrial microorganisms. J Comput Sci Syst Biol, 3(2): 43–49

    Article  CAS  Google Scholar 

  • Chellapandi P, Sivaramakrishnan S (2011). In: Baginski S J, ed. Protein superfamilies based phylogenomic analysis of archaeal domain. Biochemistry Research Updates, USA: Nova Science Publications, Inc.

    Google Scholar 

  • Chellapandi P, Suman L S, Sivaramakrishnan S (2007). Biomethanation of fungal predigested caster seed cake in acclimatized seed. Biotechnol: An Indian Journal, 1: 19–24

    Google Scholar 

  • Chistoserdova L, Vorholt J A, Thauer R K, Lidstrom M E (1998). C1 transfer enzymes and coenzymes linking methylotrophic bacteria and methanogenic Archaea. Science, 281(5373): 99–102

    Article  PubMed  CAS  Google Scholar 

  • Corbett K D, Berger J M (2003). Structure of the topoisomerase VI-B subunit: implications for type II topoisomerase mechanism and evolution. EMBO J, 22(1): 151–163

    Article  PubMed  CAS  Google Scholar 

  • Daiyasu H, Kuma K, Yokoi T, Morii H, Koga Y, Toh H (2005). A study of archaeal enzymes involved in polar lipid synthesis linking amino acid sequence information, genomic contexts and lipid composition. Archaea, 1(6): 399–410

    Article  PubMed  CAS  Google Scholar 

  • Daubin V, Gouy M, Perrière G (2002). A phylogenomic approach to bacterial phylogeny: evidence of a core of genes sharing a common history. Genome Res, 12(7): 1080–1090

    Article  PubMed  CAS  Google Scholar 

  • Deppenmeier U, Johann A, Hartsch T, Merkl R, Schmitz R A, Martinez-Arias R, Henne A, Wiezer A, Bäumer S, Jacobi C, Brüggemann H, Lienard T, Christmann A, Bömeke M, Steckel S, Bhattacharyya A, Lykidis A, Overbeek R, Klenk H P, Gunsalus R P, Fritz H J, Gottschalk G (2002). The genome of Methanosarcina mazei: evidence for lateral gene transfer between bacteria and archaea. J Mol Microbiol Biotechnol, 4(4): 453–461

    PubMed  CAS  Google Scholar 

  • Doolittle R F, Feng D F, Tsang S, Cho G, Little E (1996). Determining divergence times of the major kingdoms of living organisms with a protein clock. Science, 271(5248): 470–477

    Article  PubMed  CAS  Google Scholar 

  • Downs D M (2006). Understanding microbial metabolism. Annu Rev Microbiol, 60(1): 533–559

    Article  PubMed  CAS  Google Scholar 

  • Dvornyk V, Vinogradova O, Nevo E (2003). Origin and evolution of circadian clock genes in prokaryotes. Proc Natl Acad Sci U S A, 100(5): 2495–2500

    Article  PubMed  CAS  Google Scholar 

  • Edgell D R, Doolittle W F (1997). Archaea and the origin(s) of DNA replication proteins. Cell, 89(7): 995–998

    Article  PubMed  CAS  Google Scholar 

  • Eisen J A (1998). Phylogenomics: improving functional predictions for uncharacterized genes by evolutionary analysis. Genome Res, 8(3): 163–167

    PubMed  CAS  Google Scholar 

  • Feng D F, Cho G, Doolittle R F (1997). Determining divergence times with a protein clock: update and reevaluation. Proc Natl Acad Sci U S A, 94(24): 13028–13033

    Article  PubMed  CAS  Google Scholar 

  • Fitz-Gibbon S T, House C H (1999). Whole genome-based phylogenetic analysis of free-living microorganisms. Nucleic Acids Res, 27(21): 4218–4222

    Article  PubMed  CAS  Google Scholar 

  • Forst C V, Schulten K (1999). Evolution of metabolisms: a new method for the comparison of metabolic pathways using genomics information. J Comput Biol, 6(3–4): 343–360

    Article  PubMed  CAS  Google Scholar 

  • Forst C V, Schulten K (2001). Phylogenetic analysis of metabolic pathways. J Mol Evol, 52(6): 471–489

    PubMed  CAS  Google Scholar 

  • Fournier G P, Gogarten J P (2008). Evolution of acetoclastic methanogenesis in Methanosarcina via horizontal gene transfer from cellulolytic Clostridia. J Bacteriol, 190(3): 1124–1127

    Article  PubMed  CAS  Google Scholar 

  • Friedrich M W (2005). Methyl-coenzyme M reductase genes: unique functional markers for methanogenic and anaerobic methaneoxidizing Archaea. Methods Enzymol, 397: 428–442

    Article  PubMed  CAS  Google Scholar 

  • Frigaard N U, Martinez A, Mincer T J, DeLong E F (2006). Proteorhodopsin lateral gene transfer between marine planktonic Bacteria and Archaea. Nature, 439(7078): 847–850

    Article  PubMed  CAS  Google Scholar 

  • Gaasterland T, Ragan M A (1998). Constructing multigenome views of whole microbial genomes. Microb Comp Genomics, 3(3): 177–192

    Article  PubMed  CAS  Google Scholar 

  • Gadelle D, Filée J, Buhler C, Forterre P (2003). Phylogenomics of type II DNA topoisomerases. Bioessays, 25(3): 232–242

    Article  PubMed  CAS  Google Scholar 

  • Galagan J E C, Nusbaum C, Roy A, Endrizzi M G, Macdonald P, FitzHugh W, Calvo S, Engels R, Smirnov S, Atnoor D, Brown A, Allen N, Naylor J, Stange-Thomann N, DeArellano K, Johnson R, Linton L, McEwan P, McKernan K, Talamas J, Tirrell A, Ye W, Zimmer A, Barber R D, Cann I, Graham D E, Grahame D A, Guss A M, Hedderich R, Ingram-Smith C, Kuettner H C, Krzycki J A, Leigh J A, Li W, Liu J, Mukhopadhyay B, Reeve J N, Smith K, Springer T A, Umayam L A, White O, White R H, Conway de Macario E, Ferry J G, Jarrell K F, Jing H, Macario A J, Paulsen I, Pritchett M, Sowers K R, Swanson R V, Zinder S H, Lander E, Metcalf W W, Birren B (2002). The genome of M. acetivorans reveals extensive metabolic and physiological diversity. Genome Res, 12(4): 532–542

    CAS  Google Scholar 

  • Graham D E, Overbeek R, Olsen G J, Woese C R (2000). An archaeal genomic signature. Proc Natl Acad Sci U S A, 97(7): 3304–3308

    Article  PubMed  CAS  Google Scholar 

  • Hallam S J, Girguis P R, Preston C M, Richardson P M, DeLong E F (2003). Identification of methyl coenzyme M reductase A (mcrA) genes associated with methane-oxidizing archaea. Appl Environ Microbiol, 69(9): 5483–5491

    Article  PubMed  CAS  Google Scholar 

  • Hallam S J, Putnam N, Preston C M, Detter J C, Rokhsar D, Richardson P M, DeLong E F (2004). Reverse methanogenesis: testing the hypothesis with environmental genomics. Science, 305(5689): 1457–1462

    Article  PubMed  CAS  Google Scholar 

  • Hartzell P L, Zvilius G, Escalante-Semerena J C, Donnelly M I (1985). Coenzyme F420 dependence of the methylenetetrahydromethanopterin dehydrogenase of Methanobacterium thermoautotrophicum. Biochem Biophys Res Commun, 133(3): 884–890

    Article  PubMed  CAS  Google Scholar 

  • Hedges S B (2002). The origin and evolution of model organisms. Nat Rev Genet, 3(11): 838–849

    Article  PubMed  CAS  Google Scholar 

  • Hedges S B, Kumar S (2004). Precision of molecular time estimates. Trends Genet, 20(5): 242–247

    Article  PubMed  CAS  Google Scholar 

  • Heymans M, Singh A K (2003). Deriving phylogenetic trees from the similarity analysis of metabolic pathways. Bioinformatics, 19(Suppl 1): i138–i146

    Article  PubMed  Google Scholar 

  • Hong S H, Kim T Y, Lee S Y (2004). Phylogenetic analysis based on genome-scale metabolic pathway reaction content. Appl Microbiol Biotechnol, 65(2): 203–210

    Article  PubMed  CAS  Google Scholar 

  • Huynen M A, Bork P (1998). Measuring genome evolution. Proc Natl Acad Sci U S A, 95(11): 5849–5856

    Article  PubMed  CAS  Google Scholar 

  • John U, Fensome R A, Medlin L K (2003). The application of a molecular clock based on molecular sequences and the fossil record to explain biogeographic distributions within the Alexandrium tamarense “species complex” (Dinophyceae). Mol Biol Evol, 20(7): 1015–1027

    Article  PubMed  CAS  Google Scholar 

  • Johnson E F, Mukhopadhyay B (2005). A new type of sulfite reductase, a novel coenzyme F420-dependent enzyme, from the methanarchaeon Methanocaldococcus jannaschii. J Biol Chem, 280(46): 38776–38786

    Article  PubMed  CAS  Google Scholar 

  • Johnson E F, Mukhopadhyay B (2007). A novel coenzyme F420 dependent sulfite reductase and a small sulfite reductase in methanogenic archaea. In: Dahl C, Friedrich C G, eds. Microbial Sulfur Metabolism, Berlin: Springer, 202–216

    Google Scholar 

  • Kalyuzhnaya M G, Bowerman S, Nercessian O, Lidstrom M E, Chistoserdova L (2005). Highly divergent genes for methanopterinlinked C1 transfer reactions in Lake Washington, assessed via metagenomic analysis and mRNA detection. Appl Environ Microbiol, 71(12): 8846–8854

    Article  PubMed  CAS  Google Scholar 

  • Karthigeyan C, Sivaramakrishnan S, Chellapandi P (2007). Phylogenomic analysis of archaeal domain. Bioinformatics Trends, 2(1): 37–55

    Google Scholar 

  • Kato N, Yurimoto H, Thauer R K (2006). The physiological role of the ribulose monophosphate pathway in bacteria and archaea. Biosci Biotechnol Biochem, 70(1): 10–21

    Article  PubMed  CAS  Google Scholar 

  • Klein M, Friedrich M, Roger A J, Hugenholtz P, Fishbain S, Abicht H, Blackall L L, Stahl D A, Wagner M (2001). Multiple lateral transfers of dissimilatory sulfite reductase genes between major lineages of sulfate-reducing prokaryotes. J Bacteriol, 183(20): 6028–6035

    Article  PubMed  CAS  Google Scholar 

  • Klenk H P, Clayton R A, Tomb J F, White O, Nelson K E, Ketchum K A, Dodson R J, Gwinn M, Hickey E K, Peterson J D, Richardson D L, Kerlavage A R, Graham D E, Kyrpides N C, Fleischmann R D, Quackenbush J, Lee N H, Sutton G G, Gill S, Kirkness E F, Dougherty B A, McKenney K, Adams M D, Loftus B, Peterson S, Reich C I, McNeil L K, Badger J H, Glodek A, Zhou L, Overbeek R, Gocayne J D, Weidman J F, McDonald L, Utterback T, Cotton M D, Spriggs T, Artiach P, Kaine B P, Sykes S M, Sadow P W, D’Andrea K P, Bowman C, Fujii C, Garland S A, Mason TM, Olsen G J, Fraser C M, Smith H O, Woese C R, Venter J C (1997). The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus. Nature, 390(6658): 364–370

    Article  PubMed  CAS  Google Scholar 

  • Koonin E V (2005). Orthologs, paralogs, and evolutionary genomics. Annu Rev Genet, 39(1): 309–338

    Article  PubMed  CAS  Google Scholar 

  • Koonin E V, Mushegian A R, Galperin M Y, Walker D R (1997). Comparison of archaeal and bacterial genomes: computer analysis of protein sequences predicts novel functions and suggests a chimeric origin for the archaea. Mol Microbiol, 25(4): 619–637

    Article  PubMed  CAS  Google Scholar 

  • Koonin E V, Wolf Y I (2008). Genomics of bacteria and archaea: the emerging dynamic view of the prokaryotic world. Nucleic Acids Res, 36(21): 6688–6719

    Article  PubMed  CAS  Google Scholar 

  • Koonin E V, Wolf Y I, Kondrashov A S, Aravind L (2000). Bacterial homologs of the small subunit of eukaryotic DNA primase. J Mol Microbiol Biotechnol, 2(4): 509–512

    PubMed  CAS  Google Scholar 

  • Kyrpides N C, Olsen G J, Klenk H P, White O, Woese C R (1996). Methanococcus jannaschii genome: revisited. Microb Comp Genomics, 1(4): 329–338

    PubMed  CAS  Google Scholar 

  • Lake J A, Clark M W, Henderson E, Fay S P, Oakes M, Scheinman A, Thornber J P, Mah R A (1985). Eubacteria, halobacteria, and the origin of photosynthesis: the photocytes. Proc Natl Acad Sci U S A, 82(11): 3716–3720

    Article  PubMed  CAS  Google Scholar 

  • Ma H W, Zeng A P (2004). Phylogenetic comparison of metabolic capacities of organisms at genome level. Mol Phylogenet Evol, 31(1): 204–213

    Article  PubMed  CAS  Google Scholar 

  • Macario A J, Lange M, Ahring B K, Conway de Macario E (1999). Stress genes and proteins in the archaea. Microbiol Mol Biol Rev, 63(4): 923–967

    PubMed  CAS  Google Scholar 

  • Makarova K S, Koonin E V (2003). Comparative genomics of Archaea: how much have we learned in six years, and what’s next? Genome Biol, 4(8): 115

    Article  PubMed  Google Scholar 

  • Makarova K S, Koonin E V (2007). Evolutionary genomics of lactic acid bacteria. J Bacteriol, 189(4): 1199–1208

    Article  PubMed  CAS  Google Scholar 

  • Masinovsky Z, Lozovaya G I, Sivash A A (1992). Some aspects of the early evolution of photosynthesis. Adv Space Res, 12(4): 199–205

    Article  PubMed  CAS  Google Scholar 

  • Min H, Zinder S H (1989). Kinetics of acetate utilization by two thermophilic acetotrophic methanogens: Methanosarcina sp. strain CALS-1 and Methanothrix sp. strain CALS-1. Appl Environ Microbiol, 55(2): 488–491

    PubMed  CAS  Google Scholar 

  • Morii H, Kiyonari S, Ishino Y, Koga Y (2009). A novel biosynthetic pathway of archaetidyl-myo-inositol via archaetidyl-myo-inositol phosphate from CDP-archaeol and D-glucose 6-phosphate in methanoarchaeon Methanothermobacter thermautotrophicus cells. J Biol Chem, 284(45): 30766–30774

    Article  PubMed  CAS  Google Scholar 

  • Müller V, Spanheimer R, Santos H (2005). Stress response by solute accumulation in archaea. Curr Opin Microbiol, 8(6): 729–736

    Article  PubMed  Google Scholar 

  • Nielsen J, Oliver S (2005). The next wave in metabolome analysis. Trends Biotechnol, 23(11): 544–546

    Article  PubMed  CAS  Google Scholar 

  • Nolling J, Elfner A, Palmer J R, Steigerwald V J, Pihl T D, Lake J A, Reeve J N (1996). Phylogeny of Methanopyrus kandleri based on methyl coenzyme M reductase operons. Int J Syst Bacteriol, 46(4):1170–1173

    Article  PubMed  CAS  Google Scholar 

  • Olsen G J, Woese C R (1997). Archaeal genomics: an overview. Cell, 89(7): 991–994

    Article  PubMed  CAS  Google Scholar 

  • Pagel M (1999). Inferring the historical patterns of biological evolution. Nature, 401(6756): 877–884

    Article  PubMed  CAS  Google Scholar 

  • Patel C N, Chellapandi P (2008). Anaerobic digestion of cotton seed cake using developed mixed consortia. Electronic J Environ Agri Food Chem, 7: 3035–3046

    CAS  Google Scholar 

  • Ponomarev V A, Makarova K S, Aravind L, Koonin E V (2003). Gene duplication with displacement and rearrangement: origin of the bacterial replication protein PriB from the single-stranded DNAbinding protein Ssb. J Mol Microbiol Biotechnol, 5(4): 225–229

    Article  PubMed  CAS  Google Scholar 

  • Razia M, Karthik Raja R, Padmanaban K, Sivaramakrishnan S, Chellapandi P (2010). Phylogenetic approach for assigning function of hypothetical proteins in Photorhabdus luminescens subsp. laumondii T101 genome. J Comput Sci Syst Biol, 3(1): 21–29

    Article  CAS  Google Scholar 

  • Razia M, Padmanaban K, Karthick Raja R, Chellapandi P, Sivaramakrishnan S (2011). 16S rDNA-based phylogeny of non-symbiotic bacteria associating entomopathogenic nematode from infected insect cadavers. Genomics Proteomics Bioinformatics (In press)

  • Schmidt S, Christen P, Kiefer P, Vorholt J A (2010). Functional investigation of methanol dehydrogenase-like protein XoxF in Methylobacterium extorquens AM1. Microbiology, 156(Pt 8): 2575–2586

    Article  PubMed  CAS  Google Scholar 

  • Schopf JW (2006). Fossil evidence of Archaean life. Philos Trans R Soc Lond B Biol Sci, 361(1470): 869–885

    Article  PubMed  CAS  Google Scholar 

  • Snel B, Bork P, Huynen M A (1999). Genome phylogeny based on gene content. Nat Genet, 21(1): 108–110

    Article  PubMed  CAS  Google Scholar 

  • Snel B, Bork P, Huynen M A (2002). Genomes in flux: the evolution of archaeal and proteobacterial gene content. Genome Res, 12(1): 17–25

    Article  PubMed  CAS  Google Scholar 

  • Tatusov R L, Koonin E V, Lipman D J (1997). A genomic perspective on protein families. Science, 278(5338): 631–637

    Article  PubMed  CAS  Google Scholar 

  • Tekaia F, Lazcano A, Dujon B (1999). The genomic tree as revealed from whole proteome comparisons. Genome Res, 9(6): 550–557

    PubMed  CAS  Google Scholar 

  • Thauer R K (1998). Biochemistry of methanogenesis: a tribute to Marjory Stephenson. 1998 Marjory Stephenson Prize Lecture. Microbiology, 144(Pt 9): 2377–2406

    CAS  Google Scholar 

  • Thauer R K, Bonacker L G (1994). Biosynthesis of coenzyme F430, a nickel porphinoid involved in methanogenesis. Ciba Found Symp, 180: 210–222

    PubMed  CAS  Google Scholar 

  • Thauer R K, Kaster A K, Seedorf H, Buckel W, Hedderich R (2008). Methanogenic archaea: ecologically relevant differences in energy conservation. Nat Rev Microbiol, 6(8): 579–591

    Article  PubMed  CAS  Google Scholar 

  • van Hoek AHAM, van Alen T A, Sprakel V S I, Leunissen J A, Brigge T, Vogels G D, Hackstein J H P (2000). Multiple acquisition of methanogenic archaeal symbionts by anaerobic ciliates. Mol Biol Evol, 17(2): 251–258

    PubMed  Google Scholar 

  • Vedhagiri K, Natarajaseenivasan K, Chellapandi P, Prabhakaran S G, Selvin J, Sharma S, Vijayachari P (2009). Evolutionary implication of outer membrane lipoprotein-encoding genes ompL1, UpL32 and lipL41 of pathogenic Leptospira species. Genomics Proteomics Bioinformatics, 7(3): 96–106

    Article  PubMed  CAS  Google Scholar 

  • Verhees C H, Kengen S W, Tuininga J E, Schut G J, Adams M W W, de VOS W M, van der Oost J (2003). The unique features of glycolytic pathways in Archaea. Biochem J, 375(Pt 2): 231–246

    Article  PubMed  CAS  Google Scholar 

  • Vorholt J A, Marx C J, Lidstrom M E, Thauer R K (2000). Novel formaldehyde-activating enzyme in Methylobacterium extorquens AM1 required for growth on methanol. J Bacteriol, 182(23): 6645–6650

    Article  PubMed  CAS  Google Scholar 

  • Vothknecht U C, Tumbula D L (1999). Archaea: from genomics to physiology and the origin of life. Trends Cell Biol, 9(4): 159–161

    Article  PubMed  CAS  Google Scholar 

  • Waters E, Hohn M J, Ahel I, Graham D E, Adams M D, Barnstead M, Beeson K Y, Bibbs L, Bolanos R, Keller M, Kretz K, Lin X, Mathur E, Ni J, Podar M, Richardson T, Sutton G G, Simon M, Söll D, Stetter K O, Short J M, Noordewier M (2003). The genome of Nanoarchaeum equitans: insights into early archaeal evolution and derived parasitism. Proc Natl Acad Sci U S A, 100(22): 12984–12988

    Article  PubMed  CAS  Google Scholar 

  • Wilson R C, Bohlen C J, Foster M P, Bell C E (2006). Structure of Pfu Pop5, an archaeal RNase P protein. Proc Natl Acad Sci U S A, 103(4): 873–878

    Article  PubMed  CAS  Google Scholar 

  • Woese C R, Kandler O, Wheelis M L (1990). Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci U S A, 87(12): 4576–4579

    Article  PubMed  CAS  Google Scholar 

  • Woese C R, Magrum L J, Fox G E (1978). Archaebacteria. J Mol Evol, 11(3): 245–251

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Chellapandi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chellapandi, P. Molecular evolution of methanogens based on their metabolic facets. Front. Biol. 6, 490–503 (2011). https://doi.org/10.1007/s11515-011-1154-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11515-011-1154-2

Keywords

Navigation