Skip to main content
Log in

Genome-wide antagonism between 5-hydroxymethylcytosine and DNA methylation in the adult mouse brain

  • Research Article
  • Published:
Frontiers in Biology

Abstract

Mounting evidence points to critical roles for DNA modifications, including 5-methylcytosine (5mC) and its oxidized forms, in the development, plasticity and disorders of the mammalian nervous system. The novel DNA base 5- hydroxymethylcytosine (5hmC) is known to be capable of initiating passive or active DNA demethylation, but whether and how extensively 5hmC functions in shaping the post-mitotic neuronal DNA methylome is unclear. Here we report the genome-wide distribution of 5hmC in dentate granule neurons from adult mouse hippocampus in vivo. 5hmC in the neuronal genome is highly enriched in gene bodies, especially in exons, and correlates with gene expression. Direct genome-wide comparison of 5hmC distribution between embryonic stem cells and neurons reveals extensive differences, reflecting the functional disparity between these two cell types. Importantly, integrative analysis of 5hmC, overall DNA methylation and gene expression profiles of dentate granule neurons in vivo reveals the genome-wide antagonism between these two states of cytosine modifications, supporting a role for 5hmC in shaping the neuronal DNA methylome by promoting active DNA demethylation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bhutani N, Burns D M, Blau H M (2011). DNA demethylation dynamics. Cell, 146 (6): 866–872

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bird A (2002). DNA methylation patterns and epigenetic memory. Genes Dev, 16 (1): 6–21

    Article  CAS  PubMed  Google Scholar 

  • Booth M J, Branco M R, Ficz G, Oxley D, Krueger F, Reik W, Balasubramanian S (2012). Quantitative sequencing of 5-methylcytosine and 5-hydroxymethylcytosine at single-base resolution. Science, 336 (6083): 934–937

    Article  CAS  PubMed  Google Scholar 

  • Branco M R, Ficz G, Reik W (2012). Uncovering the role of 5- hydroxymethylcytosine in the epigenome. Nat Rev Genet, 13 (1): 7–13

    CAS  Google Scholar 

  • Dawlaty M M, Breiling A, Le T, Raddatz G, Barrasa M I, Cheng A W, Gao Q, Powell B E, Li Z, Xu M, Faull K F, Lyko F, Jaenisch R (2013). Combined deficiency of Tet1 and Tet2 causes epigenetic abnormalities but is compatible with postnatal development. Dev Cell, 24 (3): 310–323

    Article  CAS  PubMed  Google Scholar 

  • Feng J, Chang H, Li E, Fan G (2005). Dynamic expression of de novo DNA methyltransferases Dnmt3a and Dnmt3b in the central nervous system. J Neurosci Res, 79 (6): 734–746

    Article  CAS  PubMed  Google Scholar 

  • Feng J, Zhou Y, Campbell S L, Le T, Li E, Sweatt J D, Silva A J, Fan G (2010). Dnmt1 and Dnmt3a maintain DNA methylation and regulate synaptic function in adult forebrain neurons. Nat Neurosci, 13 (4): 423–430

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Frauer C, Hoffmann T, Bultmann S, Casa V, Cardoso M C, Antes I, Leonhardt H (2011). Recognition of 5-hydroxymethylcytosine by the Uhrf1 SRA domain. PLoS ONE, 6 (6): e21306

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Globisch D, Münzel M, Müller M, Michalakis S, Wagner M, Koch S, Brückl T, Biel M, Carell T (2010). Tissue distribution of 5-hydroxymethylcytosine and search for active demethylation intermediates. PLoS ONE, 5 (12): e15367

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Goll M G, Bestor T H (2005). Eukaryotic cytosine methyltransferases. Annu Rev Biochem, 74 (1): 481–514

    Article  CAS  PubMed  Google Scholar 

  • Goto K, Numata M, Komura J I, Ono T, Bestor T H, Kondo H (1994). Expression of DNA methyltransferase gene in mature and immature neurons as well as proliferating cells in mice. Differentiation, 56 (1–2): 39–44

    Article  CAS  PubMed  Google Scholar 

  • Gu T P, Guo F, Yang H, Wu H P, Xu G F, Liu W, Xie Z G, Shi L, He X, Jin S G, Iqbal K, Shi Y G, Deng Z, Szabó P E, Pfeifer G P, Li J, Xu G L (2011). The role of Tet3 DNA dioxygenase in epigenetic reprogramming by oocytes. Nature, 477 (7366): 606–610

    Article  CAS  PubMed  Google Scholar 

  • Guo J U, Ma D K, Mo H, Ball M P, Jang M H, Bonaguidi M A, Balazer J A, Eaves H L, Xie B, Ford E, Zhang K, Ming G L, Gao Y, Song H (2011a). Neuronal activity modifies the DNA methylation landscape in the adult brain. Nat Neurosci, 14 (10): 1345–1351

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Guo J U, Su Y, Shin J H, Shin J, Li H, Xie B, Zhong C, Hu S, Le T, Fan G, Zhu H, Chang Q, Gao Y, Ming G L, Song H (2013). Distribution, recognition and regulation of non-CpG methylation in the adult mammalian brain. Nat Neurosci, doi: 10.1038/nn.3607

    Google Scholar 

  • Guo J U, Su Y, Zhong C, Ming G L, Song H (2011b). Emerging roles of TET proteins and 5-hydroxymethylcytosines in active DNA demethylation and beyond. Cell Cycle, 10 (16): 2662–2668

    Article  CAS  PubMed  Google Scholar 

  • Guo J U, Su Y, Zhong C, Ming G L, Song H (2011c). Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain. Cell, 145 (3): 423–434

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hahn M A, Qiu R, Wu X, Li A X, Zhang H, Wang J, Jui J, Jin S G, Jiang Y, Pfeifer G P, Lu Q (2013). Dynamics of 5-hydroxymethylcytosine and chromatin marks in Mammalian neurogenesis. Cell Rep, 3: 291–300

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • He Y F, Li B Z, Li Z, Liu P, Wang Y, Tang Q, Ding J, Jia Y, Chen Z, Li L, Sun Y, Li X, Dai Q, Song C X, Zhang K, He C, Xu G L (2011). Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science, 333 (6047): 1303–1307

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Inoue A, Zhang Y (2011). Replication-dependent loss of 5-hydroxymethylcytosine in mouse preimplantation embryos. Science, 334 (6053): 194

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ito S, D’Alessio A C, Taranova O V, Hong K, Sowers L C, Zhang Y (2010). Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature, 466 (7310): 1129–1133

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ito S, Shen L, Dai Q, Wu S C, Collins L B, Swenberg J A, He C, Zhang Y (2011). Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science, 333 (6047): 1300–1303

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kaas G A, Zhong C, Eason D E, Ross D L, Vachhani R V, Ming G L, King J R, Song H, Sweatt J D (2013). TET1 controls CNS 5-methylcytosine hydroxylation, active DNA demethylation, gene transcription, and memory formation. Neuron, 79 (6): 1086–1093

    Article  CAS  PubMed  Google Scholar 

  • Kim T K, Hemberg M, Gray J M, Costa A M, Bear D M, Wu J, Harmin D A, Laptewicz M, Barbara-Haley K, Kuersten S, Markenscoff- Papadimitriou E, Kuhl D, Bito H,Worley P F, Kreiman G, Greenberg M E (2010). Widespread transcription at neuronal activity-regulated enhancers. Nature, 465 (7295): 182–187

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kohli R M, Zhang Y (2013). TET enzymes, TDG and the dynamics of DNA demethylation. Nature, 502 (7472): 472–479

    Article  CAS  PubMed  Google Scholar 

  • Kriaucionis S, Heintz N (2009). The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science, 324 (5929): 929–930

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lienert F, Wirbelauer C, Som I, Dean A, Mohn F, Schóbeler D (2011). Identification of genetic elements that autonomously determine DNA methylation states. Nat Genet, 43 (11): 1091–1097

    Article  CAS  PubMed  Google Scholar 

  • Lister R, Pelizzola M, Dowen R H, Hawkins R D, Hon G, Tonti-Filippini J, Nery J R, Lee L, Ye Z, Ngo QM, Edsall L, Antosiewicz-Bourget J, Stewart R, Ruotti V, Millar A H, Thomson J A, Ren B, Ecker J R (2009). Human DNA methylomes at base resolution show widespread epigenomic differences. Nature, 462 (7271): 315–322

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ma D K, Guo J U, Ming G L, Song H (2009a). DNA excision repair proteins and Gadd45 as molecular players for active DNA demethylation. Cell Cycle, 8 (10): 1526–1531

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ma D K, Ponnusamy K, Song M R, Ming G L, Song H (2009b). Molecular genetic analysis of FGFR1 signalling reveals distinct roles of MAPK and PLCgamma1 activation for self-renewal of adult neural stem cells. Mol Brain, 2 (1): 16

    Article  PubMed Central  PubMed  Google Scholar 

  • Meissner A, Mikkelsen T S, Gu H, Wernig M, Hanna J, Sivachenko A, Zhang X, Bernstein B E, Nusbaum C, Jaffe D B, Gnirke A, Jaenisch R, Lander E S (2008). Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature, 454 (7205): 766–770

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mellén M, Ayata P, Dewell S, Kriaucionis S, Heintz N (2012). MeCP2 binds to 5hmC enriched within active genes and accessible chromatin in the nervous system. Cell, 151 (7): 1417–1430

    Article  PubMed Central  PubMed  Google Scholar 

  • Miller C A, Sweatt J D (2007). Covalent modification of DNA regulates memory formation. Neuron, 53 (6): 857–869

    Article  CAS  PubMed  Google Scholar 

  • Pastor W A, Aravind L, Rao A (2013). TETonic shift: biological roles of TET proteins in DNA demethylation and transcription. Nat Rev Mol Cell Biol, 14 (6): 341–356

    Article  CAS  PubMed  Google Scholar 

  • Pastor W A, Pape U J, Huang Y, Henderson H R, Lister R, Ko M, McLoughlin EM, Brudno Y, Mahapatra S, Kapranov P, Tahiliani M, Daley G Q, Liu X S, Ecker J R, Milos PM, Agarwal S, Rao A (2011). Genome-wide mapping of 5-hydroxymethylcytosine in embryonic stem cells. Nature, 473 (7347): 394–397

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rudenko A, Dawlaty M M, Seo J, Cheng AW, Meng J, Le T, Faull K F, Jaenisch R, Tsai L H (2013). Tet1 is critical for neuronal activityregulated gene expression and memory extinction. Neuron, 79 (6): 1109–1122

    Article  CAS  PubMed  Google Scholar 

  • Shukla S, Kavak E, Gregory M, Imashimizu M, Shutinoski B, Kashlev M, Oberdoerffer P, Sandberg R, Oberdoerffer S (2011). CTCF-promoted RNA polymerase II pausing links DNA methylation to splicing. Nature, 479 (7371): 74–79

    Article  CAS  PubMed  Google Scholar 

  • Song C X, Szulwach K E, Dai Q, Fu Y, Mao S Q, Lin L, Street C, Li Y, Poidevin M, Wu H, Gao J, Liu P, Li L, Xu G L, Jin P, He C (2013). Genome-wide profiling of 5-formylcytosine reveals its roles in epigenetic priming. Cell, 153 (3): 678–691

    Article  CAS  PubMed  Google Scholar 

  • Song C X, Szulwach K E, Fu Y, Dai Q, Yi C, Li X, Li Y, Chen C H, Zhang W, Jian X, Wang J, Zhang L, Looney T J, Zhang B, Godley L A, Hicks L M, Lahn B T, Jin P, He C (2011). Selective chemical labeling reveals the genome-wide distribution of 5-hydroxymethylcytosine. Nat Biotechnol, 29 (1): 68–72

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Spruijt C G, Gnerlich F, Smits A H, Pfaffeneder T, Jansen PW, Bauer C, Münzel M, Wagner M, Müller M, Khan F, Eberl H C, Mensinga A, Brinkman A B, Lephikov K, Müller U, Walter J, Boelens R, van Ingen H, Leonhardt H, Carell T, Vermeulen M (2013). Dynamic readers for 5-(hydroxy)methylcytosine and its oxidized derivatives. Cell, 152 (5): 1146–1159

    Article  CAS  PubMed  Google Scholar 

  • Stadler M B, Murr R, Burger L, Ivanek R, Lienert F, Schöler A, van Nimwegen E, Wirbelauer C, Oakeley E J, Gaidatzis D, Tiwari V K, Schübeler D (2011a). DNA-binding factors shape the mouse methylome at distal regulatory regions. Nature, 480 (7378): 490–495

    CAS  PubMed  Google Scholar 

  • Stadler M B, Murr R, Burger L, Ivanek R, Lienert F, Schöler A, van Nimwegen E, Wirbelauer C, Oakeley E J, Gaidatzis D, Tiwari V K, Schübeler D (2011b). DNA-binding factors shape the mouse methylome at distal regulatory regions. Nature, 480 (7378): 490–495

    CAS  PubMed  Google Scholar 

  • Szulwach K E, Li X, Li Y, Song C X, Han J W, Kim S, Namburi S, Hermetz K, Kim J J, Rudd M K, Yoon Y S, Ren B, He C, Jin P (2011a). Integrating 5-hydroxymethylcytosine into the epigenomic landscape of human embryonic stem cells. PLoS Genet, 7 (6): e1002154

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Szulwach K E, Li X, Li Y, Song C X,Wu H, Dai Q, Irier H, Upadhyay A K, Gearing M, Levey A I, Vasanthakumar A, Godley L A, Chang Q, Cheng X, He C, Jin P (2011b). 5-hmC-mediated epigenetic dynamics during postnatal neurodevelopment and aging. Nat Neurosci, 14 (12): 1607–1616

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tahiliani M, Koh K P, Shen Y, Pastor W A, Bandukwala H, Brudno Y, Agarwal S, Iyer LM, Liu D R, Aravind L, Rao A (2009). Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science, 324 (5929): 930–935

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Valinluck V, Sowers L C (2007). Endogenous cytosine damage products alter the site selectivity of human DNA maintenance methyltransferase DNMT1. Cancer Res, 67 (3): 946–950

    Article  CAS  PubMed  Google Scholar 

  • Wang F, Yang Y, Lin X, Wang J Q, Wu Y S, Xie W, Wang D, Zhu S, Liao Y Q, Sun Q, Yang Y G, Luo H R, Guo C, Han C, Tang T S (2013). Genome-wide loss of 5-hmC is a novel epigenetic feature of Huntington’s disease. Hum Mol Genet, 22 (18): 3641–3653

    Article  CAS  PubMed  Google Scholar 

  • Wu S C, Zhang Y (2010). Active DNA demethylation: many roads lead to Rome. Nat Rev Mol Cell Biol, 11 (9): 607–620

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xu Y, Wu F, Tan L, Kong L, Xiong L, Deng J, Barbera A J, Zheng L, Zhang H, Huang S, Min J, Nicholson T, Chen T, Xu G, Shi Y, Zhang K, Shi Y G (2011). Genome-wide regulation of 5hmC, 5mC, and gene expression by Tet1 hydroxylase in mouse embryonic stem cells. Mol Cell, 42 (4): 451–464

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yamaguchi S, Shen L, Liu Y, Sendler D, Zhang Y (2013). Role of Tet1 in erasure of genomic imprinting. Nature, 504 (7480): 460–464

    Article  CAS  PubMed  Google Scholar 

  • Yao B, Lin L, Street R C, Zalewski Z A, Galloway J N,Wu H, Nelson D L, Jin P (2013). Genome-wide alteration of 5-hydroxymethylcytosine in a mouse model of fragile X-associated tremor/ataxia syndrome. Hum Mol Genet, (Oct): 20 (Epub ahead of print)

    Google Scholar 

  • Yu M, Hon G C, Szulwach K E, Song C X, Zhang L, Kim A, Li X, Dai Q, Shen Y, Park B, Min J H, Jin P, Ren B, He C (2012). Base resolution analysis of 5-hydroxymethylcytosine in the mammalian genome. Cell, 149 (6): 1368–1380

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang H, Zhang X, Clark E, Mulcahey M, Huang S, Shi Y G (2010). TET1 is a DNA-binding protein that modulates DNA methylation and gene transcription via hydroxylation of 5-methylcytosine. Cell Res, 20 (12): 1390–1393

    Article  PubMed  Google Scholar 

  • Zhang R R, Cui Q Y, Murai K, Lim Y C, Smith Z D, Jin S, Ye P, Rosa L, Lee Y K, Wu H P, Liu W, Xu Z M, Yang L, Ding Y Q, Tang F, Meissner A, Ding C, Shi Y, Xu G L (2013). Tet1 regulates adult hippocampal neurogenesis and cognition. Cell Stem Cell, 13 (2): 237–245

    Article  CAS  PubMed  Google Scholar 

  • Zhu J K (2009). Active DNA demethylation mediated by DNA glycosylases. Annu Rev Genet, 43 (1): 143–166

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peng Jin or Hongjun Song.

Additional information

These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, J.U., Szulwach, K.E., Su, Y. et al. Genome-wide antagonism between 5-hydroxymethylcytosine and DNA methylation in the adult mouse brain. Front. Biol. 9, 66–74 (2014). https://doi.org/10.1007/s11515-014-1295-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11515-014-1295-1

Keywords

Navigation