Skip to main content
Log in

Isolation and characterization of tyrosinase produced by marine actinobacteria and its application in the removal of phenol from aqueous environment

  • Research Article
  • Published:
Frontiers in Biology

Abstract

The present study was focused on screening and characterization of tyrosinase enzyme produced by marine actinobacteria and its application in phenolic compounds removal from aqueous solution. A total of 20 strains were isolated from marine sediment sample and screened for tyrosinase production by using skimmed milk agar medium. Among 20 isolates, two isolates LK-4 and LK-20 showed zone of hydrolysis and these were taken for secondary screening by using tyrosine agar medium. Based on the result of secondary screening LK-4 was selected for further analysis, such as tyrosinase assay, protein content and specific activity of the enzyme. The tyrosinase enzyme was produced in a SS medium and was partially purified by ammonium sulfate precipitation, dialysis and SDS PAGE. The isolate (LK-4) was identified as Streptomyces espinosus using 16S rRNA gene sequencing and named as “Streptomyces espinosus strain LK4 (KF806735)”. The tyrosinase enzyme was immobilized in sodium alginate which was applied to remove phenolic compounds from water. The enzyme efficiently removed the phenolic compounds from aqueous solution within few hours which indicated that tyrosinase enzyme produced by Streptomyces espinosus strain LK-4 can be potently used for the removal of phenol and phenolic compounds from wastewater in industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adeyemi O, Oginni O, Osubor C C, Adeyemi O, Oloyede O B, Oladiji A T, Adebayo E A (2009). Effect of water contaminated with phthalate, benzene and cyclohexane on Clarias gariepinus’ cellular system. Food Chem Toxicol, 47(8): 1941–1944

    Article  CAS  PubMed  Google Scholar 

  • Anwar A, Qader S A, Raiz A, Iqbal S, Azhar A (2009). Calcium alginate: a support material for immobilization of proteases from newly isolated strain of Bacillus subtilis KIBGE-HAS. World Appl Sci J, 7: 1281–1286

    CAS  Google Scholar 

  • Bevilaqua J V, Freire M C, Anna S (2002). Phenol removal through combined biological and enzymatic treatments. Braz J Chem Eng, 19(2): 151–158

    Article  CAS  Google Scholar 

  • Bradford M M (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of proteindye binding. Anal Biochem, 72(1–2): 248–254

    Article  CAS  PubMed  Google Scholar 

  • Chung T P, Tseng H Y, Juang R S (2003). Mass transfer effect and intermediate detection for phenol degradation in immobilized Pseudomonas putida systems. Process Biochem, 38(10): 1497–1507

    Article  CAS  Google Scholar 

  • Crecchio C, Ruggiero P, Pizzigallo M D R (1995). Polyphenoloxidases immobilized in organic gels: Properties and applications in the detoxification of aromatic compounds. Biotechnol Bioeng, 48(6): 585–591

    Article  CAS  PubMed  Google Scholar 

  • Cuypers R, Sudhölter E J, Zuilhof H (2010). Hydrogen bonding in phosphine oxide/phosphate-phenol complexes. ChemPhysChem, 11(10): 2230–2240

    Article  CAS  PubMed  Google Scholar 

  • Dajanta K, Wongkham S, Thirach P, Baophoeng P, Apichartsrangkoon A, Santithum P, Chukeatirote E (2009). Comparative study of proteolytic activity of protease-producing bacteria isolated from Thua nao. Maejo Int J Sci Technol, 3: 269–276

    CAS  Google Scholar 

  • Dalfard B, Khajeh K, Soudi M R, Manesh H N, Ranjbar B, Sajedi R H (2006). Isolation and biochemical characterization of laccase and tyrosinase activities in a novel melanogenic soil bacterium. Enzyme Microb Technol, 39(7): 1409–1416

    Article  CAS  Google Scholar 

  • Decker H, Tuczek F (2000). Tyrosinase/catecholoxidase activity of hemocyanins: structural basis and molecular mechanism. Trends Biochem Sci, 25(8): 392–397

    Article  CAS  PubMed  Google Scholar 

  • Della-Cioppa G, Garger S J, Holtz R B, McCulloch M J, Sverlow G G (1998a). Method for making stable extracellular tyrosinase and synthesis of polyphenolic polymers therefrom. US Patent 5801047

  • Della-Cioppa G, Garger S J, Sverlow G G, Turpen T H, Grill L K, Chedekal M R (1998b). Melanin production by Streptomyces. US Patent 5814495

  • Dolashki A, Gushterova A (2009). Identification and characterization of tyrosinase from Streptomyces albus by mass spectrometry. Biotechnol & Biotechnol, 23: 946–950

    Article  Google Scholar 

  • Dura’n N, Rosa M A, D’Annibale A, Gianfreda L (2002). Applications of laccases and tyrosinases (phenoloxidases) immobilized on different supports: a review. Enzyme Microb Technol, 31(7): 907–931

    Article  Google Scholar 

  • Escribano J, Cabanes J, Chazarra S, Garcı’a-Carmona F (1997). Characterization of monophenolase activity of table beet polyphenol oxidase. Determination of kinetic parameters on the tyramine/dopamine pair. J Agric Food Chem, 45(11): 4209–4214

    CAS  Google Scholar 

  • Fairhead M, Thöny-Meyer L (2012). Bacterial tyrosinases: old enzymes with new relevance to biotechnology. New Biotechnol, 29(2): 183–191

    Article  CAS  Google Scholar 

  • Gernjak W, Krutzler T, Glaser A, Malato S, Caceres J, Bauer R, Fernández-Alba A R (2003). Photo-Fenton treatment of water containing natural phenolic pollutants. Chemosphere, 50(1): 71–78

    Article  CAS  PubMed  Google Scholar 

  • Grady C P L Jr (1990). Biodegradation of toxic organics: status and potential. J Environ Eng, 116(5): 805–828

    Article  CAS  Google Scholar 

  • Ha S R, Vinitnantharat S, Ozaki H (2000). Bioregeneration by mixed microorganisms of granular activated carbon loaded with a mixture of phenols. Biotechnol Lett, 22(13): 1093–1096

    Article  CAS  Google Scholar 

  • Haghbeen K, Jazii F R, Karkhane A A, Borojerdi S S (2004). Purification of tyrosinase from edible mushroom. Iranian J Biotechnol, 2: 189–194

    CAS  Google Scholar 

  • Halaouli S, Asther M, Sigoillot J C, Hamdi M, Lomascolo A (2006). Fungal tyrosinases: new prospects in molecular characteristics, bioengineering and biotechnological applications. J Appl Microbiol, 100(2): 219–232

    Article  CAS  PubMed  Google Scholar 

  • Jones B V, Sun F, Marchesi J R (2007). Using skimmed milk agar to functionally screen a gut metagenomic library for proteases may lead to false positives. Lett Appl Microbiol, 45(4): 418–420

    Article  CAS  PubMed  Google Scholar 

  • Kameda E, Langone M A, Coelho M A (2006). Tyrosinase extract from Agaricus bisporus mushroom and its in natura tissue for specific phenol removal. Environ Technol, 27(11): 1209–1215

    Article  CAS  PubMed  Google Scholar 

  • Karthik L, Kumar G, Bhaskara Rao K V (2010). Diversity of marine actinomycetes from Nicobar marine sediments and its antifungal activity. Int J Pharm Pharm Sci, 2: 199–203

    Google Scholar 

  • Kathiresan K, Balagurunathan R, Manilamani M, Selvan (2005). Fungicidal effect of marine actinomycetes against phytopathogenic fungi. Indian J Biotechnol, 4: 271–276

    Google Scholar 

  • Katz E, Betancourt A (1988). Induction of tyrosinase by L-methionine in Streptomyces antibioticus. Can J Microbiol, 34(12): 1297–1303

    Article  CAS  PubMed  Google Scholar 

  • Klibanov AM, Alberti B N, Morris E D, Felshin LM(1980). Enzymatic removal of toxic phenols and anilines from waste waters. J Appl Biochem, 2: 414–421

    CAS  Google Scholar 

  • Kruger N J (1994). The Bradford method for protein quantitation. Methods Mol Biol, 32: 9–15

    CAS  PubMed  Google Scholar 

  • Matoba Y, Kumagai T, Yamamoto A, Yoshitsu H, Sugiyama M (2006). Crystallographic evidence that the dinuclear copper center of tyrosinase is flexible during catalysis. J Biol Chem, 281(13): 8981–8990

    Article  CAS  PubMed  Google Scholar 

  • Maurya S, Singh D (2010). Quantitative Analysis of Total Phenolic Content in Adhatoda vasica Nees Extracts. Int J Pharm Tech Res, 2: 2403–2406

    CAS  Google Scholar 

  • Mayer A M, Staples R C (2002). Laccase: new functions for an old enzyme. Phytochemistry, 60(6): 551–565

    Article  CAS  PubMed  Google Scholar 

  • Molina L P, Hiner A N P, Tudela J, Garcı’a-Ca’novas F, Rodrı’guez-Lo’pez J N (2003). Enzymatic removal of phenolsfrom aqueous solution by artichoke (Cynara scolymus L.)extracts. Enzyme Microb Technol, 33(5): 738–742

    Article  Google Scholar 

  • Nambudiri A M D, Bhat J V (1972). Conversion of p-cumarate into caffeate by Streptomyces nigrifaciens. Biochem J, 130: 425–433

    CAS  PubMed Central  PubMed  Google Scholar 

  • Peralta-Zamora P, Pereira CM, Tiburtius E R L, Moraes S G, Rosa MA, Minussi R C, Dura’n N (2003). Decolorization of reactive dyes by immobilized laccase. Appl Catal B, 42(2): 131–144

    Article  CAS  Google Scholar 

  • Philipp S, Held T, Kutzner H J (1991). Purification and characterization of the tyrosinase of Streptomyces michiganensis DSM 40015. J Basic Microbiol, 31(4): 293–300

    Article  CAS  Google Scholar 

  • Popa C, Bahrim G (2011). Streptomyces tyrosinase: production and practical applications. Innov Rom Food Biotechnol, 8: 1–7

    CAS  Google Scholar 

  • Raval K M, Vaswani P S, Majumder D R (2012). Biotransformation of a single amino acid L tyrosine into a bioactive molecule L-DOPA. Int J Sci Res, 2: 2250–3153

    Google Scholar 

  • Rice R H, Cohen D E (1996). The basic science of poisons. McGraw-Hill, New York

    Google Scholar 

  • Robb D A (1995). Exploiting tyrosinase activity in aqueous and nonaqueous media. Acs Sym Ser, 600: 159–165

    Article  CAS  Google Scholar 

  • Saboury A A, Zolghadri S, Haghbeen K, Moosavi-Movahedi A A (2006). The inhibitory effect of benzenethiol on the cresolase and catecholase activities of mushroom tyrosinase. J Enzyme Inhib Med Chem, 21(6): 711–717

    Article  CAS  PubMed  Google Scholar 

  • Saiki R K, Scharf S, Faloona F, Mullis K B, Horn G T, Erlich H A, Arnheim N (1985). Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science, 230(4732): 1350–1354

    Article  CAS  PubMed  Google Scholar 

  • Saitou N, Nei M (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol, 4(4): 406–425

    CAS  PubMed  Google Scholar 

  • Saiyood S, Vangnai A S, Thiravetyan P, Inthorn D (2010). Bisphenol A removal by the Dracaena plant and the role of plant-associating bacteria. J Hazard Mater, 178(1–3): 777–785

    Article  CAS  PubMed  Google Scholar 

  • Seo S Y, Sharma V K, Sharma N (2003). Mushroom tyrosinase: recent prospects. J Agric Food Chem, 51(10): 2837–2853

    Article  CAS  PubMed  Google Scholar 

  • Shesterenko Y A, Sevastyanov O V, Romanoyskaya L L (2012). Removal of phenols from aqueous solutions using Tyrosinase immobilized on polymer carriers and inorganic coagulants. J Water Chem Technol, 34(2): 107–111

    Article  Google Scholar 

  • Shi J, Bian W, Yin X (2009). Organic contaminants removal by the technique of pulsed high-voltage discharge in water. J Hazard Mater, 171(1–3): 924–931

    Article  CAS  PubMed  Google Scholar 

  • Shubhrasekhar C, Supriya M, Karthik L, Gaurav K, Bhaskara Rao K V (2013). Isolation, characterization and application of biosurfactant produced by marine actinobacteria isolated from Saltpan soil from coastal area of Andhra Pradesh, India. Res J Biotechnol, 8: 18–25

    CAS  Google Scholar 

  • Vermelho A B, Meirelles M N L, Lopes A, Petinate S D G, Chaia A A, Branquinha M H (1996). Detection of extracellular proteases from microorganisms on agar plates. Mem Inst Oswaldo Cruz, 91(6): 755–760

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Fang X, Bai B, Liang X, Shuler P J, Goddard WA 3rd, Tang Y (2007). Engineering bacteria for production of rhamnolipid as an agent for enhanced oil recovery. Biotechnol Bioeng, 98(4): 842–853

    Article  CAS  PubMed  Google Scholar 

  • Xu D Y, Yang Y, Yang Z (2011). Activity and stability of cross-linked tyrosinase aggregates in aqueous and nonaqueous media. J Biotechnol, 152(1–2): 30–36

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Li Y, Zhang C, Zeng Q, Zhou Q (2008). Sorption and degradation of bisphenol A by aerobic activated sludge. J Hazard Mater, 155(1–2): 305–311

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kokati Venkata Bhaskara Rao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roy, S., Das, I., Munjal, M. et al. Isolation and characterization of tyrosinase produced by marine actinobacteria and its application in the removal of phenol from aqueous environment. Front. Biol. 9, 306–316 (2014). https://doi.org/10.1007/s11515-014-1324-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11515-014-1324-0

Keywords

Navigation