Skip to main content
Log in

Three-dimensional fibril-reinforced finite element model of articular cartilage

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Collagen fiber orientations in articular cartilage are tissue depth-dependent and joint site-specific. A realistic three-dimensional (3D) fiber orientation has not been implemented in modeling fluid flow-dependent response of articular cartilage; thus the detailed mechanical role of the collagen network may have not been fully understood. In the present study, a previously developed fibril-reinforced model of articular cartilage was extended to account for the 3D fiber orientation. A numerical procedure for the material model was incorporated into the finite element code ABAQUS using the “user material” option. Unconfined compression and indentation testing was evaluated. For indentation testing, we considered a mechanical contact between a solid indenter and a medial femoral condyle, assuming fiber orientations in the surface layer to follow the split-line pattern. The numerical results from the 3D modeling for unconfined compression seemed reasonably to deviate from that of axisymmetric modeling. Significant fiber orientation dependence was observed in the displacement, fluid pressure and velocity for the cases of moderate strain-rates, or during early relaxation. The influence of fiber orientation diminished at static and instantaneous compressions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Adam C, Eckstein F, Milz S, Putz R (1998) The distribution of cartilage thickness within the joints of the lower limb of elderly individuals. J Anat 193:203–214. doi:10.1046/j.1469-7580.1998.19320203.x

    Article  Google Scholar 

  2. Aigner T, Stöve J (2003) Collagens–major component of the physiological cartilage matrix, major target of cartilage degeneration, major tool in cartilage repair. Adv Drug Deliv Rev 55:1569–1593. doi:10.1016/j.addr.2003.08.009

    Article  Google Scholar 

  3. Andriacchi TP, Briant PL, Bevill SL, Koo S (2006) Rotational changes at the knee after ACL injury cause cartilage thinning. Clin Orthop Relat Res 442:39–44. doi:10.1097/01.blo.0000197079.26600.09

    Article  Google Scholar 

  4. Ateshian GA, Warden WH, Kim JJ, Grelsamer RP, Mow VC (1997) Finite deformation biphasic material properties of bovine articular cartilage from confined compression experiments. J Biomech 30:1157–1164. doi:10.1016/S0021-9290(97)85606-0

    Article  Google Scholar 

  5. Bader DL, Knight MM (2008) Biomechanical analysis of structural deformation in living cells. Med Biol Eng Comput 46:951–963. doi:10.1007/s11517-008-0381-4

    Article  Google Scholar 

  6. Basser PJ, Schneiderman R, Bank RA, Wachtel E, Maroudas A (1998) Mechanical properties of the collagen network in human articular cartilage as measured by osmotic stress technique. Arch Biochem Biophys 351:207–219. doi:10.1006/abbi.1997.0507

    Article  Google Scholar 

  7. Below S, Arnoczky SP, Dodds J, Kooima C, Walter N (2002) The split-line pattern of the distal femur: a consideration in the orientation of autologous cartilage grafts. Arthrosc J Arthrosc Relat Surg 18:613–617. doi:10.1053/jars.2002.29877

    Article  Google Scholar 

  8. Bendjaballah MZ, Shirazi-Adl A, Zukor DJ (1995) Biomechancs of the human knee joint in compression: reconstruction, mesh generation and finite element analysis. Knee 2:69–79. doi:10.1016/0968-0160(95)00018-K

    Article  Google Scholar 

  9. Brown TD, Singerman RJ (1986) Experimental determination of the linear biphasic constitutive coefficients of human fetal proximal femoral chondroepiphysis. J Biomech 19:597–605. doi:10.1016/0021-9290(86)90165-X

    Article  Google Scholar 

  10. Chen CT, Malkus DS, Vanderby R Jr (1998) A fiber matrix model for interstitial fluid flow and permeability in ligaments and tendons. Biorheology 35:103–118. doi:10.1016/S0006-355X(99)80001-8

    Article  Google Scholar 

  11. Cohen B, Lai WM, Mow VC (1998) A transversely isotropic biphasic model for unconfined compression of growth plate and chondroepiphysis. J Biomech Eng 120:491–496. doi:10.1115/1.2798019

    Article  Google Scholar 

  12. Donzelli PS, Spilker RL, Ateshian GA, Mow VC (1999) Contact analysis of biphasic transversely isotropic cartilage layers and correlations with tissue failure. J Biomech 32:1037–1047. doi:10.1016/S0021-9290(99)00106-2

    Article  Google Scholar 

  13. Elias JJ, Cosgarea AJ (2007) Computational modeling: an alternative approach for investigating patellofemoral mechanics. Sports Med Arthrosc Rev 15:89–94. doi:10.1097/JSA.0b013e31804bbe4d

    Article  Google Scholar 

  14. Federico S, Herzog W (2008) On the anisotropy and inhomogeneity of permeability in articular cartilage. Biomech Model Mechanobiol 7:367–378. doi:10.1007/s10237-007-0091-0

    Article  Google Scholar 

  15. Fung YC (1993) Biomechanics: Mechanical Properties of Living Tissues, 2nd edn. Springer-Verlag, New York

    Google Scholar 

  16. García JJ, Cortés DH (2007) A biphasic viscohyperelastic fibril-reinforced model for articular cartilage: formulation and comparison with experimental data. J Biomech 40:1737–1744. doi:10.1016/j.jbiomech.2006.08.001

    Article  Google Scholar 

  17. García JJ, Altiero NJ, Haut RC (1998) An approach for the stress analysis of transversely isotropic biphasic cartilage under impact load. J Biomech Eng 120:608–613. doi:10.1115/1.2834751

    Article  Google Scholar 

  18. Gu WY, Mao XG, Foster RJ, Weidenbaum M, Mow VC, Rawlins BA (1999) The anisotropic hydraulic permeability of human lumbar anulus fibrosus. Influence of age, degeneration, direction, and water content. Spine 24:2449–2455. doi:10.1097/00007632-199912010-00005

    Article  Google Scholar 

  19. Han S, Gemmell SJ, Helmer KG, Grigg P, Wellen JW, Hoffman AH, Sotak CH (2000) Changes in ADC caused by tensile loading of rabbit Achilles tendon: evidence for water transport. J Magn Reson 144:217–227. doi:10.1006/jmre.2000.2075

    Article  Google Scholar 

  20. Haut Donahue TL, Hull ML, Rashid MM, Jacobs CR (2003) How the stiffness of meniscal attachments and meniscal material properties affect tibio-femoral contact pressure computed using a validated finite element model of the human knee joint. J Biomech 36:19–34. doi:10.1016/S0021-9290(02)00305-6

    Article  Google Scholar 

  21. Haut Donahue TL, Hull ML, Rashid MM, Jacobs CR (2004) The sensitivity of tibiofemoral contact pressure to the size and shape of the lateral and medial menisci. J Orthop Res 22:807–814. doi:10.1016/j.orthres.2003.12.010

    Article  Google Scholar 

  22. Jurvelin JS, Buschmann MD, Hunziker EB (2003) Mechanical anisotropy of the human knee articular cartilage in compression. Proc Inst Mech Eng Part H J Eng Med 217H:215–219

    Article  Google Scholar 

  23. Korhonen RK, Laasanen MS, Töyräs J, Lappalainen R, Helminen HJ, Jurvelin JS (2003) Fibril reinforced poroelastic model predicts specifically mechanical behavior of normal, proteoglycan depleted and collagen degraded articular cartilage. J Biomech 36:1373–1379. doi:10.1016/S0021-9290(03)00069-1

    Article  Google Scholar 

  24. Kuettner KE, Cole AA (2005) Cartilage degeneration in different human joints. Osteoarthritis Cartilage 13:93–103. doi:10.1016/j.joca.2004.11.006 Review

    Article  Google Scholar 

  25. Li LP, Herzog W (2004) The role of viscoelasticity of collagen fibers in articular cartilage: theory and numerical formulation. Biorheology 41:181–194

    Google Scholar 

  26. Li LP, Herzog W (2006) Arthroscopic evaluation of cartilage degeneration using indentation testing—influence of indenter geometry. Clin Biomech (Bristol, Avon) 21:420–426. doi:10.1016/j.clinbiomech.2005.12.010

    Article  Google Scholar 

  27. Li LP, Soulhat J, Buschmann MD, Shirazi-Adl A (1999) Nonlinear analysis of cartilage in unconfined ramp compression using a fibril reinforced poroelastic model. Clin Biomech (Bristol, Avon) 14:673–682. doi:10.1016/S0268-0033(99)00013-3

    Article  Google Scholar 

  28. Li G, Gil J, Kanamori A, Woo SL (1999) A validated three-dimensional computational model of a human knee joint. J Biomech Eng 121:657–662. doi:10.1115/1.2800871

    Article  Google Scholar 

  29. Li G, Lopez O, Rubash H (2001) Variability of a three-dimensional finite element model constructed using magnetic resonance images of a knee for joint contact stress analysis. J Biomech Eng 123:341–346. doi:10.1115/1.1385841

    Article  MATH  Google Scholar 

  30. Li LP, Buschmann MD, Shirazi-Adl A (2003) Strain-rate dependent stiffness of articular cartilage in unconfined compression. J Biomech Eng 125:161–168. doi:10.1115/1.1560142

    Article  Google Scholar 

  31. Mak AF (1986) Unconfined compression of hydrated viscoelastic tissues: a biphasic poroviscoelastic analysis. Biorheology 23:371–383

    Google Scholar 

  32. Mizrahi J, Maroudas A, Lanir Y, Ziv I, Webber TJ (1986) The “instantaneous” deformation of cartilage: effects of collagen fiber orientation and osmotic stress. Biorheology 23:311–330

    Google Scholar 

  33. Mow VC, Kuei SC, Lai WM, Armstrong CG (1980) Biphasic creep and stress relaxation of articular cartilage in compression: theory and experiments. J Biomech Eng 102:73–84

    Article  Google Scholar 

  34. Oloyede A, Flachsmann R, Broom ND (1992) The dramatic influence of loading velocity on the compressive response of articular cartilage. Connect Tissue Res 27:211–244. doi:10.3109/03008209209006997

    Article  Google Scholar 

  35. Peña E, Calvo B, Martínez MA, Palanca D, Doblaré M (2005) Finite element analysis of the effect of meniscal tears and meniscectomies on human knee biomechanics. Clin Biomech (Bristol, Avon) 20:498–507. doi:10.1016/j.clinbiomech.2005.01.009

    Article  Google Scholar 

  36. Peña E, Calvo B, Martínez MA, Doblaré M (2007) Effect of the size and location of osteochondral defects in degenerative arthritis. A finite element simulation. Comput Biol Med 37:376–387. doi:10.1016/j.compbiomed.2006.04.004

    Article  Google Scholar 

  37. Penrose JM, Holt GM, Beaugonin M, Hose DR (2002) Development of an accurate three-dimensional finite element knee model. Comput Methods Biomech Biomed Eng 5:291–300. doi:10.1080/1025584021000009724

    Article  Google Scholar 

  38. Ramaniraka NA, Terrier A, Theumann N, Siegrist O (2005) Effects of the posterior cruciate ligament reconstruction on the biomechanics of the knee joint: a finite element analysis. Clin Biomech (Bristol, Avon) 20:434–442. doi:10.1016/j.clinbiomech.2004.11.014

    Article  Google Scholar 

  39. Reynaud B, Quinn TM (2006) Anisotropic hydraulic permeability in compressed articular cartilage. J Biomech 39:131–137. doi:10.1016/j.jbiomech.2004.10.015

    Article  Google Scholar 

  40. Shepherd DET, Seedhom BB (1999) Thickness of human articular cartilage in joints of the lower limb. Ann Rheum Dis 58:27–34. doi:10.1136/ard.58.1.27

    Article  Google Scholar 

  41. Shirazi R, Shirazi-Adl A, Hurtig M (2008) Role of cartilage collagen fibrils networks in knee joint biomechanics under compression. J Biomech 41:3340–3348. doi:10.1016/j.jbiomech.2008.09.033

    Article  Google Scholar 

  42. Suh JK, Bai S (1998) Finite element formulation of biphasic poroviscoelastic model for articular cartilage. J Biomech Eng 120:195–201. doi:10.1115/1.2798302

    Article  Google Scholar 

  43. Suh JK, Spilker RL (1994) Indentation analysis of biphasic articular cartilage: nonlinear phenomena under finite deformation. J Biomech Eng 116:1–9. doi:10.1115/1.2895700

    Article  Google Scholar 

  44. Wilson W, van Donkelaar CC, van Rietbergen B, Ito K, Huiskes R (2004) Stresses in the local collagen network of articular cartilage: a poroviscoelastic fibril-reinforced finite element study. J Biomech 37: 357–366 (Erratum 38:2138–2140)

    Google Scholar 

  45. Woo SLY, Akeson WH, Jemmott GF (1976) Measurements of nonhomogeneous, directional mechanical properties of articular cartilage in tension. J Biomech 9:785–791. doi:10.1016/0021-9290(76)90186-X

    Article  Google Scholar 

  46. Yao J, Funkenbusch PD, Snibbe J, Maloney M, Lerner AL (2006) Sensitivities of medial meniscal motion and deformation to material properties of articular cartilage, meniscus and meniscal attachments using design of experiments methods. J Biomech Eng 128:399–408. doi:10.1115/1.2191077

    Article  Google Scholar 

  47. Zielinska B, Donahue TL (2006) 3D finite element model of meniscectomy: changes in joint contact behavior. J Biomech Eng 128:115–123. doi:10.1115/1.2132370

    Article  Google Scholar 

Download references

Acknowledgments

This study was partially supported by the Canadian Institutes of Health Research, the Canada Research Chair program and the Croucher Foundation of Hong Kong, China. The finite element computation was performed on the WestGrid computers at the University of Calgary.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. P. Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, L.P., Cheung, J.T.M. & Herzog, W. Three-dimensional fibril-reinforced finite element model of articular cartilage. Med Biol Eng Comput 47, 607–615 (2009). https://doi.org/10.1007/s11517-009-0469-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-009-0469-5

Keywords

Navigation