Skip to main content
Log in

Targeting an efficient target-to-target interval for P300 speller brain–computer interfaces

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Longer target-to-target intervals (TTI) produce greater P300 event-related potential amplitude, which can increase brain–computer interface (BCI) classification accuracy and decrease the number of flashes needed for accurate character classification. However, longer TTIs requires more time for each trial, which will decrease the information transfer rate of BCI. In this paper, a P300 BCI using a 7 × 12 matrix explored new flash patterns (16-, 18- and 21-flash pattern) with different TTIs to assess the effects of TTI on P300 BCI performance. The new flash patterns were designed to minimize TTI, decrease repetition blindness, and examine the temporal relationship between each flash of a given stimulus by placing a minimum of one (16-flash pattern), two (18-flash pattern), or three (21-flash pattern) non-target flashes between each target flashes. Online results showed that the 16-flash pattern yielded the lowest classification accuracy among the three patterns. The results also showed that the 18-flash pattern provides a significantly higher information transfer rate (ITR) than the 21-flash pattern; both patterns provide high ITR and high accuracy for all subjects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Allison BZ, Neuper C (2010) Could anyone use a BCI? (B + H)CI: the human in brain-computer interfaces and the brain in human–computer interaction, Springer. pp 35–54

  2. Allison BZ, Pineda JA (2006) Effects of SOA and flash pattern manipulations on ERPs, performance, and preference: implications for a BCI system. Int J Psychophysiol 59(2):127–140

    Article  PubMed  Google Scholar 

  3. Birbaumer N, Ghanayim N, Hinterberger T, Iversen I, Kotchoubey B, Kuber A, Perelmouter J, Taub E, Flor H (1999) A spelling device for the paralysed. Nature 388:297–298

    Article  Google Scholar 

  4. Boord P, Craig A, Tran Y, Nguyen H (2010) Discrimination of left and right leg motor imagery for brain-computer interfaces. Med Biol Eng Comput 48(4):343–350

    Article  PubMed  Google Scholar 

  5. Brunner C, Billinger M, Vidaurre C, Neuper C (2011) A comparison of univariate, vector, bilinear autoregressive, and band power features for brain-computer interface. Med Biol Eng Comput 49(11):1337–1346

    Article  PubMed  Google Scholar 

  6. Dal Seno, Matteucci M, Mainardil L (2010) Online detection of P300 and error potentials in a BCI speller. Comput Intell Neurosci 307254

  7. Dias NS, Kamrunnahar M, Mendes PM, Schiff SJ, Correia JH (2010) Feature selection on movement imagery discrimination and attention detection. Med Biol Eng Comput 48(4):331–341

    Article  PubMed  CAS  Google Scholar 

  8. Farwell LA, Donchin E (1988) Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials. Electroencephalogr Clin Neurophysiol 70(6):510–523

    Article  PubMed  CAS  Google Scholar 

  9. Gonsalvez CL, Polich J (2002) P300 amplitude is determined by target-to-target interval. Psychophysiology 39(3):388–396

    Article  PubMed  Google Scholar 

  10. Guger C, Daban S, Sellers EW, Holzner C, Krausz G, Carabalona R, Gramatica F, Edlinger G (2009) How many people are able to control a P300-based brain–computer interface (BCI). Neurosci Lett 462(1):94–98

    Article  PubMed  CAS  Google Scholar 

  11. Hill J, Farquhar J, Martens S, Bießmann F, Schölkopf B (2008) Effects of stimulus type and of error-correcting code design on bci speller performance: NIPS [on line]. http://books.nips.cc/papers/files/nips21/NIPS2008_0359.pdf

  12. Hoffmann U, Vesin JM, Ebrahimi T, Diserens K (2008) An efficient P300-based brain–computer interface for disabled subjects. J Neurosci Meth 167(1):115–125

    Article  Google Scholar 

  13. Horki P, Solis-Escalante T, Neuper C, Muller-Putz G (2011) Combined motor imagery and SSVEP based BCI control of a DOF artificial upper limb. Med Biol Eng Comput 49(5):567–577

    Article  PubMed  Google Scholar 

  14. Jansen BH, Allam A, Kota P, Lachance K, Osho A, Sundarean K (2004) An exploratory study of factors affecting single trial P300 detection. IEEE Trans Biomed Eng 51(6):975–978

    Article  PubMed  Google Scholar 

  15. Jin J, Allison BZ, Brunner C, Wang B, Wang XY, Zhang JH, Neuper C, Pfurtscheller G (2010) P300 Chinese imput system based on bayesian LDA. Biomed Tech 55(1):5–18

    Article  Google Scholar 

  16. Jin J, Horki P, Brunner C, Wang XY, Neuper C, Pfurtscheller G (2010) A new P300 stimulus presentation pattern for EEG-based spelling systems. Biomed Tech 55(4):203–210

    Article  Google Scholar 

  17. Jin J, Allison BZ, Sellers EW, Brunner C, Horki P, Wang XY, Neuper C (2011) Optimized stimulus presentation patterns for an event-related potential EEG-based brain computer interface. Med Biol Eng Comput 49(2):181–191

    Article  PubMed  Google Scholar 

  18. Jin J, Allison BZ, Sellers EW, Brunner C, Horki P, Wang XY, Neuper C (2011) Adaptive P300 based control system. J Neural Eng 8(3):036006

    Article  PubMed  Google Scholar 

  19. Jung TP, Makeig S, Westerfield M, Townsend J, Courchesne E, Sejnowski TJ (2001) Analysis and visualization of single-trial event-related potentials. Hum Brain Mapp 14(3):166–185

    Article  PubMed  CAS  Google Scholar 

  20. Kolev V, Demiralp T, Yordanova J, Ademoglu A, Isoglu-Alkaç U (1997) Time-frequency analysis reveals multiple functional components during oddball P300. NeuroReport 8(8):2061–2065

    Article  PubMed  CAS  Google Scholar 

  21. Krusienski DJ, Sellers EW, McFarland DJ, Vaughan TM, Wolpaw JR (2008) Toward enhanced P300 speller performance. J Neurosci Meth 167(1):15–21

    Article  CAS  Google Scholar 

  22. Lei X, Yang P, Yao DZ (2009) An empirical bayesian framework for brain computer interface. IEEE Trans Neural Syst Rehabil Eng 17(6):521–529

    Article  PubMed  Google Scholar 

  23. Lenhardt A, Kaper M, Ritter HJ (2008) An adaptive P300-based online brain–computer interface. IEEE Trans Neural Syst Rehabil Eng 16(2):121–130

    Article  PubMed  Google Scholar 

  24. Martens SMM, Hill NJ, Farquhar J, Scholkopf B (2009) Overlap and refractory effects in a brain–computer interface speller based on the visual P300 event-related potential. J Neural Eng 6(2):026003

    Article  PubMed  CAS  Google Scholar 

  25. McFarland DJ, Sarnacki WA, Townsend G, Vaughan T, Wolpaw JR (2011) The P300-based brain–computer interface (BCI): effects of stimulus rate. Clin Neurophysiol 122(4):731–737

    Article  PubMed  Google Scholar 

  26. Obermaier B, Neuper C, Guger C, Pfurtscheller G (2001) Information transfer rate in a five-classes brain–computer interface. IEEE Trans Neural Syst Rehabil Eng 9(3):283–288

    Article  PubMed  CAS  Google Scholar 

  27. Pfurtscheller G, Neuper C (2001) Motor imagery and direct brain-computer communication. Proc IEEE 89(7):1123–1134

    Article  Google Scholar 

  28. Quitadamo LR, Marciani MG, Cardarilli GC, Bianchi L (2008) Describing different brain computer interface systems through a unique model: a UML implementation. Neuroinformatics 6(2):81–96

    Article  PubMed  Google Scholar 

  29. Quitadamo LR, Abbafati M, Cardarilli GC, Mattia D, Cincotti F, Babiloni F, Marciani MG, Bianchi L (2012) Evaluation of the performance of different P300 based brain-computer interface by means of the efficiency metric. J Neurosci Methods 203(2):361–368

    Article  PubMed  CAS  Google Scholar 

  30. Salvaris M, Sepulveda F (2009) Visual modifications on the P300 speller BCI paradigm. J Neural Eng 6(4):046011

    Article  PubMed  CAS  Google Scholar 

  31. Salvaris M, Sepulveda F (2009) Perceptual Errors in the Farwell and Donchin Matrix Speller. 4th international conference IEEE/EMBS Antalya, April, 275–78

  32. Sellers EW, Donchin E (2006) A P300-based brain-computer interface: initial tests by ALS patients. Clin Neurophysiol 117(3):538–548

    Article  PubMed  Google Scholar 

  33. Sellers EW, Krusienski DJ, McFarland DJ, Vaughan TM, Wolpaw JR (2006) A P300 event-related potential brain–computer interface (BCI): the effects of matrix size and inter stimulus interval on performance. Biol Psychol 73(3):242–252

    Article  PubMed  Google Scholar 

  34. Townsend G, LaPallo BK, Boulay CB, Krusienski DJ, Frye GE, Hauser CK, Schwartz NE, Vaughan TM, Wolpaw JR, Sellers EW (2010) A novel P300-based brain-computer interface stimulus presentation paradigm: moving beyond rows and columns. Clin Neurophysiol 121(7):1109–1120

    Article  PubMed  CAS  Google Scholar 

  35. Vidal jj (1973) Toward direct brain-computer communication. Annu Rev Biophs Bioeng 2:157–180

    Article  CAS  Google Scholar 

  36. Xu N, Gao XR, Hong B, Miao XB, Gao SK, Yang FH (2004) BCI competition 2003: data Set IIb: Enhancing P300 wave detection using ICA based subspace projections for BCI applications. IEEE Trans Biomed Eng 51(6):1067–1072

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Jin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jin, J., Sellers, E.W. & Wang, X. Targeting an efficient target-to-target interval for P300 speller brain–computer interfaces. Med Biol Eng Comput 50, 289–296 (2012). https://doi.org/10.1007/s11517-012-0868-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-012-0868-x

Keywords

Navigation