Skip to main content
Log in

Targeting multiple oncogenic pathways for the treatment of hepatocellular carcinoma

  • Review Article
  • Published:
Targeted Oncology Aims and scope Submit manuscript

Abstract

Hepatocellular carcinoma (HCC) is one of the most common forms of liver cancer diagnosed worldwide. HCC occurs due to chronic liver disease and is often diagnosed at advanced stages. Chemotherapeutic agents such as doxorubicin are currently used as first-line agents for HCC therapy, but these are non-selective cytotoxic molecules with significant side effects. Sorafenib, a multi-targeted tyrosine kinase inhibitor, is the only approved targeted drug for HCC patients. However, due to adverse side effects and limited efficacy, there is a need for the identification of novel pharmacological drugs beyond sorafenib. Several agents that target and inhibit various signaling pathways involved in HCC are currently being assessed for HCC treatment. In the present review article, we summarize the diverse signal transduction pathways responsible for initiation as well as progression of HCC and also the potential anticancer effects of selected targeted therapies that can be employed for HCC therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Fearon ER. Human cancer syndromes: clues to the origin and nature of cancer. Science. 1997;278:1043–50.

    Article  CAS  PubMed  Google Scholar 

  2. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100:57–70.

    Article  CAS  PubMed  Google Scholar 

  3. Denhardt DT. Oncogene-initiated aberrant signaling engenders the metastatic phenotype: synergistic transcription factor interactions are targets for cancer therapy. Crit Rev Oncog. 1996;7:261–91.

    Article  CAS  PubMed  Google Scholar 

  4. Fausto N, Campbell JS, Riehle KJ. Liver regeneration. Hepatology. 2006;43:S45–53.

    Article  CAS  PubMed  Google Scholar 

  5. Carriaga MT, Henson DE. The histologic grading of cancer. Cancer. 1995;75:406–21.

    Article  CAS  PubMed  Google Scholar 

  6. Torre LA, Bray F, Siegel RL, et al. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65:87–108.

    Article  PubMed  Google Scholar 

  7. [Anonymous]. Proceedings of the 2nd national theme symposium on hepatitis B infection in India. Therapeutic options and prevention strategies. New Delhi, September 2 and 3, 2000. Abstracts. Indian J Gastroenterol. 2000;19(Suppl 3):C1-82.

  8. Melbye M, Skinhoj P, Nielsen NH, et al. Virus-associated cancers in Greenland: frequent hepatitis B virus infection but low primary hepatocellular carcinoma incidence. J Natl Cancer Inst. 1984;73:1267–72.

    CAS  PubMed  Google Scholar 

  9. Kumar R, Saraswat MK, Sharma BC, et al. Characteristics of hepatocellular carcinoma in India: a retrospective analysis of 191 cases. QJM. 2008;101:479–85.

    Article  CAS  PubMed  Google Scholar 

  10. Parkin DM. The global health burden of infection-associated cancers in the year 2002. Int J Cancer. 2006;118:3030–44.

    Article  CAS  PubMed  Google Scholar 

  11. Lau WY, Lai EC. Hepatocellular carcinoma: current management and recent advances. Hepatobiliary Pancreat Dis Int. 2008;7:237–57.

    PubMed  Google Scholar 

  12. Nakamoto Y, Kaneko S. Mechanisms of viral hepatitis induced liver injury. Curr Mol Med. 2003;3:537–44.

    Article  CAS  PubMed  Google Scholar 

  13. Herzer K, Sprinzl MF, Galle PR. Hepatitis viruses: live and let die. Liver Int. 2007;27:293–301.

    Article  CAS  PubMed  Google Scholar 

  14. Block TM, Mehta AS, Fimmel CJ, Jordan R. Molecular viral oncology of hepatocellular carcinoma. Oncogene. 2003;22:5093–107.

    Article  CAS  PubMed  Google Scholar 

  15. Hino O, Kajino K, Umeda T, Arakawa Y. Understanding the hypercarcinogenic state in chronic hepatitis: a clue to the prevention of human hepatocellular carcinoma. J Gastroenterol. 2002;37:883–7.

    Article  CAS  PubMed  Google Scholar 

  16. Feitelson MA, Reis HM, Liu J, et al. Hepatitis B virus X antigen (HBxAg) and cell cycle control in chronic infection and hepatocarcinogenesis. Front Biosci. 2005;10:1558–72.

    Article  CAS  PubMed  Google Scholar 

  17. Bouchard MJ, Schneider RJ. The enigmatic X gene of hepatitis B virus. J Virol. 2004;78:12725–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hsia CC, Yuwen H, Tabor E. Hot-spot mutations in hepatitis B virus X gene in hepatocellular carcinoma. Lancet. 1996;348:625–6.

    Article  CAS  PubMed  Google Scholar 

  19. Yeh CT, Shen CH, Tai DI, et al. Identification and characterization of a prevalent hepatitis B virus X protein mutant in Taiwanese patients with hepatocellular carcinoma. Oncogene. 2000;19:5213–20.

    Article  CAS  PubMed  Google Scholar 

  20. Abe K, Edamoto Y, Park YN, et al. In situ detection of hepatitis B, C, and G virus nucleic acids in human hepatocellular carcinoma tissues from different geographic regions. Hepatology. 1998;28:568–72.

    Article  CAS  PubMed  Google Scholar 

  21. Subramaniam A, Shanmugam MK, Perumal E, et al. Potential role of signal transducer and activator of transcription (STAT)3 signaling pathway in inflammation, survival, proliferation and invasion of hepatocellular carcinoma. Biochim Biophys Acta. 1835;2013:46–60.

    Google Scholar 

  22. Dubuisson J, Penin F, Moradpour D. Interaction of hepatitis C virus proteins with host cell membranes and lipids. Trends Cell Biol. 2002;12:517–23.

    Article  CAS  PubMed  Google Scholar 

  23. Bureau C, Bernad J, Chaouche N, et al. Nonstructural 3 protein of hepatitis C virus triggers an oxidative burst in human monocytes via activation of NADPH oxidase. J Biol Chem. 2001;276:23077–83.

    Article  CAS  PubMed  Google Scholar 

  24. Gong G, Waris G, Tanveer R, Siddiqui A. Human hepatitis C virus NS5A protein alters intracellular calcium levels, induces oxidative stress, and activates STAT-3 and NF-kappa B. Proc Natl Acad Sci U S A. 2001;98:9599–604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hoofnagle JH. Course and outcome of hepatitis C. Hepatology. 2002;36:S21–29.

    Article  PubMed  Google Scholar 

  26. Jahan S, Ashfaq UA, Qasim M, et al. Hepatitis C virus to hepatocellular carcinoma. Infect Agent Cancer. 2012;7:2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Alter MJ. Epidemiology of hepatitis C. Hepatology. 1997;26:62S–5S.

    Article  CAS  PubMed  Google Scholar 

  28. Fartoux L, Poujol-Robert A, Guechot J, et al. Insulin resistance is a cause of steatosis and fibrosis progression in chronic hepatitis C. Gut. 2005;54:1003–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Pekow JR, Bhan AK, Zheng H, Chung RT. Hepatic steatosis is associated with increased frequency of hepatocellular carcinoma in patients with hepatitis C-related cirrhosis. Cancer. 2007;109:2490–6.

    Article  PubMed  Google Scholar 

  30. Bieche I, Asselah T, Laurendeau I, et al. Molecular profiling of early stage liver fibrosis in patients with chronic hepatitis C virus infection. Virology. 2005;332:130–44.

    Article  CAS  PubMed  Google Scholar 

  31. Patton HM, Patel K, Behling C, et al. The impact of steatosis on disease progression and early and sustained treatment response in chronic hepatitis C patients. J Hepatol. 2004;40:484–90.

    Article  PubMed  Google Scholar 

  32. Koike K, Moriya K. Metabolic aspects of hepatitis C viral infection: steatohepatitis resembling but distinct from NASH. J Gastroenterol. 2005;40:329–36.

    Article  CAS  PubMed  Google Scholar 

  33. Moriya K, Nakagawa K, Santa T, et al. Oxidative stress in the absence of inflammation in a mouse model for hepatitis C virus-associated hepatocarcinogenesis. Cancer Res. 2001;61:4365–70.

    CAS  PubMed  Google Scholar 

  34. Ingle PV, Samsudin SZ, Chan PQ, et al. Development and novel therapeutics in hepatocellular carcinoma: a review. Ther Clin Risk Manag. 2016;12:445–55.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Totoki Y, Tatsuno K, Covington KR, et al. Trans-ancestry mutational landscape of hepatocellular carcinoma genomes. Nat Genet. 2014;46:1267–73.

    Article  CAS  PubMed  Google Scholar 

  36. Ahn SM, Jang SJ, Shim JH, et al. Genomic portrait of resectable hepatocellular carcinomas: implications of RB1 and FGF19 aberrations for patient stratification. Hepatology. 2014;60:1972–82.

    Article  CAS  PubMed  Google Scholar 

  37. Woo HG, Wang XW, Budhu A, et al. Association of TP53 mutations with stem cell-like gene expression and survival of patients with hepatocellular carcinoma. Gastroenterology. 2011;140:1063–70.

    Article  CAS  PubMed  Google Scholar 

  38. Cleary SP, Jeck WR, Zhao X, et al. Identification of driver genes in hepatocellular carcinoma by exome sequencing. Hepatology. 2013;58:1693–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jhunjhunwala S, Jiang Z, Stawiski EW, et al. Diverse modes of genomic alteration in hepatocellular carcinoma. Genome Biol. 2014;15:436.

    PubMed  PubMed Central  Google Scholar 

  40. Kan Z, Zheng H, Liu X, et al. Whole-genome sequencing identifies recurrent mutations in hepatocellular carcinoma. Genome Res. 2013;23:1422–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Schulze K, Imbeaud S, Letouze E, et al. Exome sequencing of hepatocellular carcinomas identifies new mutational signatures and potential therapeutic targets. Nat Genet. 2015;47:505–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lee JS. The mutational landscape of hepatocellular carcinoma. Clin Mol Hepatol. 2015;21:220–9.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Bruix J, Sherman M. Practice Guidelines Committee AAftSoLD. Management of hepatocellular carcinoma. Hepatology. 2005;42:1208–36.

    Article  PubMed  Google Scholar 

  44. Llovet JM, Bruix J. Molecular targeted therapies in hepatocellular carcinoma. Hepatology. 2008;48:1312–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cheng AL, Kang YK, Chen Z, et al. Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: a phase III randomised, double-blind, placebo-controlled trial. Lancet Oncol. 2009;10:25–34.

    Article  CAS  PubMed  Google Scholar 

  46. Lencioni R, Kudo M, Ye SL, et al. GIDEON (Global Investigation of therapeutic DEcisions in hepatocellular carcinoma and Of its treatment with sorafeNib): second interim analysis. Int J Clin Pract. 2014;68:609–17.

    Article  CAS  PubMed  Google Scholar 

  47. Di Marco V, De Vita F, Koskinas J, et al. Sorafenib: from literature to clinical practice. Ann Oncol. 2013;24 Suppl 2:ii30–37.

    Article  PubMed  Google Scholar 

  48. Granito A, Marinelli S, Negrini G, et al. Prognostic significance of adverse events in patients with hepatocellular carcinoma treated with sorafenib. Therap Adv Gastroenterol. 2016;9:240–9.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Lencioni R, Llovet JM, Han G, et al. Sorafenib or placebo plus TACE with doxorubicin-eluting beads for intermediate stage HCC: The SPACE trial. J Hepatol. 2016;64:1090–8.

    Article  CAS  PubMed  Google Scholar 

  50. Bruix J, Takayama T, Mazzaferro V, et al. Adjuvant sorafenib for hepatocellular carcinoma after resection or ablation (STORM): a phase 3, randomised, double-blind, placebo-controlled trial. Lancet Oncol. 2015;16:1344–54.

    Article  CAS  PubMed  Google Scholar 

  51. Cheng AL, Kang YK, Lin DY, et al. Sunitinib versus sorafenib in advanced hepatocellular cancer: results of a randomized phase III trial. J Clin Oncol. 2013;31:4067–75.

    Article  CAS  PubMed  Google Scholar 

  52. Pascual S, Herrera I, Irurzun J. New advances in hepatocellular carcinoma. World J Hepatol. 2016;8:421–38.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Johnson PJ, Qin S, Park JW, et al. Brivanib versus sorafenib as first-line therapy in patients with unresectable, advanced hepatocellular carcinoma: results from the randomized phase III BRISK-FL study. J Clin Oncol. 2013;31:3517–24.

    Article  CAS  PubMed  Google Scholar 

  54. Llovet JM, Decaens T, Raoul JL, et al. Brivanib in patients with advanced hepatocellular carcinoma who were intolerant to sorafenib or for whom sorafenib failed: results from the randomized phase III BRISK-PS study. J Clin Oncol. 2013;31:3509–16.

    Article  CAS  PubMed  Google Scholar 

  55. Lackner MR, Wilson TR, Settleman J. Mechanisms of acquired resistance to targeted cancer therapies. Future Oncol. 2012;8:999–1014.

    Article  CAS  PubMed  Google Scholar 

  56. Bagrodia S, Smeal T, Abraham RT. Mechanisms of intrinsic and acquired resistance to kinase-targeted therapies. Pigment Cell Melanoma Res. 2012;25:819–31.

    Article  CAS  PubMed  Google Scholar 

  57. Bottsford-Miller JN, Coleman RL, Sood AK. Resistance and escape from antiangiogenesis therapy: clinical implications and future strategies. J Clin Oncol. 2012;30:4026–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zhai B, Sun XY. Mechanisms of resistance to sorafenib and the corresponding strategies in hepatocellular carcinoma. World J Hepatol. 2013;5:345–52.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Shikha SS, Sakshi S, Kumar AP, Sethi G. Potential Application of Natural Compounds for the Prevention and Treatment of Hepatocellular Carcinoma. In: Kishore R. Sakharkar, Meena K. Sakharkar, Chandra R eds, Post-genomic approaches in cancer and nano medicine: River Publishers; 2015: 95–160

  60. Aruljothi Subramaniam, Muthu K. Shanmugam, Ekambaram Perumal et al. Possible Involvement of Signal 6 Transducer and Activator of Transcription-3 (STAT3) Signaling Pathway in the Initiation and Progression of Hepatocellular Carcinoma. In: Sudhakaran PR ed, Perspectives in Cancer Prevention – Translational Cancer Research: Springer India; 2014: 73–87

  61. Wang J, Chenivesse X, Henglein B, Brechot C. Hepatitis B virus integration in a cyclin A gene in a hepatocellular carcinoma. Nature. 1990;343:555–7.

    Article  CAS  PubMed  Google Scholar 

  62. Chirillo P, Falco M, Puri PL, et al. Hepatitis B virus pX activates NF-kappa B-dependent transcription through a Raf-independent pathway. J Virol. 1996;70:641–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Lee YH, Yun Y. HBx protein of hepatitis B virus activates Jak1-STAT signaling. J Biol Chem. 1998;273:25510–5.

    Article  CAS  PubMed  Google Scholar 

  64. Benn J, Schneider RJ. Hepatitis B virus HBx protein activates Ras-GTP complex formation and establishes a Ras, Raf, MAP kinase signaling cascade. Proc Natl Acad Sci U S A. 1994;91:10350–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Cha MY, Kim CM, Park YM, Ryu WS. Hepatitis B virus X protein is essential for the activation of Wnt/beta-catenin signaling in hepatoma cells. Hepatology. 2004;39:1683–93.

    Article  CAS  PubMed  Google Scholar 

  66. Fukutomi T, Zhou Y, Kawai S, et al. Hepatitis C virus core protein stimulates hepatocyte growth: correlation with upregulation of wnt-1 expression. Hepatology. 2005;41:1096–105.

    Article  CAS  PubMed  Google Scholar 

  67. Avila MA, Berasain C, Sangro B, Prieto J. New therapies for hepatocellular carcinoma. Oncogene. 2006;25:3866–84.

    Article  CAS  PubMed  Google Scholar 

  68. Kolch W. Meaningful relationships: the regulation of the Ras/Raf/MEK/ERK pathway by protein interactions. Biochem J. 2000;351(Pt 2):289–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Huynh H, Nguyen TT, Chow KH, et al. Over-expression of the mitogen-activated protein kinase (MAPK) kinase (MEK)-MAPK in hepatocellular carcinoma: its role in tumor progression and apoptosis. BMC Gastroenterol. 2003;3:19.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Erhardt A, Hassan M, Heintges T, Haussinger D. Hepatitis C virus core protein induces cell proliferation and activates ERK, JNK, and p38 MAP kinases together with the MAP kinase phosphatase MKP-1 in a HepG2 Tet-Off cell line. Virology. 2002;292:272–84.

    Article  CAS  PubMed  Google Scholar 

  71. Lee HC, Tian B, Sedivy JM, et al. Loss of Raf kinase inhibitor protein promotes cell proliferation and migration of human hepatoma cells. Gastroenterology. 2006;131:1208–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Wilhelm SM, Adnane L, Newell P, et al. Preclinical overview of sorafenib, a multikinase inhibitor that targets both Raf and VEGF and PDGF receptor tyrosine kinase signaling. Mol Cancer Ther. 2008;7:3129–40.

    Article  CAS  PubMed  Google Scholar 

  73. Zhou Q, Lui VW, Yeo W. Targeting the PI3K/Akt/mTOR pathway in hepatocellular carcinoma. Future Oncol. 2011;7:1149–67.

    Article  CAS  PubMed  Google Scholar 

  74. Roberts LR, Gores GJ. Hepatocellular carcinoma: molecular pathways and new therapeutic targets. Semin Liver Dis. 2005;25:212–25.

    Article  CAS  PubMed  Google Scholar 

  75. Alexia C, Fallot G, Lasfer M, et al. An evaluation of the role of insulin-like growth factors (IGF) and of type-I IGF receptor signalling in hepatocarcinogenesis and in the resistance of hepatocarcinoma cells against drug-induced apoptosis. Biochem Pharmacol. 2004;68:1003–15.

    Article  CAS  PubMed  Google Scholar 

  76. Villanueva A, Chiang DY, Newell P et al. Pivotal role of mTOR signaling in hepatocellular carcinoma. Gastroenterology. 2008;135:1972–83.

  77. Siveen KS, Ahn KS, Ong TH, et al. Y-tocotrienol inhibits angiogenesis-dependent growth of human hepatocellular carcinoma through abrogation of AKT/mTOR pathway in an orthotopic mouse model. Oncotarget. 2014;5:1897–911.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Zhu AX, Abrams TA, Miksad R, et al. Phase 1/2 study of everolimus in advanced hepatocellular carcinoma. Cancer. 2011;117:5094–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Zhu AX, Kudo M, Assenat E, et al. Effect of everolimus on survival in advanced hepatocellular carcinoma after failure of sorafenib: the EVOLVE-1 randomized clinical trial. JAMA. 2014;312:57–67.

    Article  PubMed  CAS  Google Scholar 

  80. Decaens T, Luciani A, Itti E, et al. Phase II study of sirolimus in treatment-naive patients with advanced hepatocellular carcinoma. Dig Liver Dis. 2012;44:610–6.

    Article  CAS  PubMed  Google Scholar 

  81. Gedaly R, Angulo P, Hundley J, et al. PI-103 and sorafenib inhibit hepatocellular carcinoma cell proliferation by blocking Ras/Raf/MAPK and PI3K/AKT/mTOR pathways. Anticancer Res. 2010;30:4951–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Huynh H, Ngo VC, Koong HN, et al. Sorafenib and rapamycin induce growth suppression in mouse models of hepatocellular carcinoma. J Cell Mol Med. 2009;13:2673–83.

    Article  PubMed  Google Scholar 

  83. Chen KF, Chen HL, Tai WT, et al. Activation of phosphatidylinositol 3-kinase/Akt signaling pathway mediates acquired resistance to sorafenib in hepatocellular carcinoma cells. J Pharmacol Exp Ther. 2011;337:155–61.

    Article  CAS  PubMed  Google Scholar 

  84. Herencia C, Martinez-Moreno JM, Herrera C, et al. Nuclear translocation of beta-catenin during mesenchymal stem cells differentiation into hepatocytes is associated with a tumoral phenotype. PLoS One. 2012;7, e34656.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Zhang Y, Wei W, Cheng N, et al. Hepatitis C virus-induced up-regulation of microRNA-155 promotes hepatocarcinogenesis by activating Wnt signaling. Hepatology. 2012;56:1631–40.

    Article  CAS  PubMed  Google Scholar 

  86. Srisuttee R, Koh SS, Kim SJ, et al. Hepatitis B virus X (HBX) protein upregulates beta-catenin in a human hepatic cell line by sequestering SIRT1 deacetylase. Oncol Rep. 2012;28:276–82.

    CAS  PubMed  Google Scholar 

  87. Bishayee A. β-Catenin: a novel biomarker and therapeutic target in liver cancer. In: Georgakilas A ed, Cancer Biomarkers. Boca Raton, FL: CRC press; 2013: 51–75

  88. Kisseleva T, Bhattacharya S, Braunstein J, Schindler CW. Signaling through the JAK/STAT pathway, recent advances and future challenges. Gene. 2002;285:1–24.

    Article  CAS  PubMed  Google Scholar 

  89. Bromberg JF. Activation of STAT proteins and growth control. Bioessays. 2001;23:161–9.

    Article  CAS  PubMed  Google Scholar 

  90. Calvisi DF, Ladu S, Gorden A, et al. Ubiquitous activation of Ras and Jak/Stat pathways in human HCC. Gastroenterology. 2006;130:1117–28.

    Article  CAS  PubMed  Google Scholar 

  91. Siveen KS, Sikka S, Surana R, et al. Targeting the STAT3 signaling pathway in cancer: role of synthetic and natural inhibitors. Biochim Biophys Acta. 1845;2014:136–54.

    Google Scholar 

  92. Siveen KS, Nguyen AH, Lee JH, et al. Negative regulation of signal transducer and activator of transcription-3 signalling cascade by lupeol inhibits growth and induces apoptosis in hepatocellular carcinoma cells. Br J Cancer. 2014;111:1327–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Sethi G, Chatterjee S, Rajendran P, et al. Inhibition of STAT3 dimerization and acetylation by garcinol suppresses the growth of human hepatocellular carcinoma in vitro and in vivo. Mol Cancer. 2014;13:66.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Rajendran P, Li F, Shanmugam MK, et al. Celastrol suppresses growth and induces apoptosis of human hepatocellular carcinoma through the modulation of STAT3/JAK2 signaling cascade in vitro and in vivo. Cancer Prev Res (Phila). 2012;5:631–43.

    Article  CAS  Google Scholar 

  95. Tai WT, Cheng AL, Shiau CW, et al. Dovitinib induces apoptosis and overcomes sorafenib resistance in hepatocellular carcinoma through SHP-1-mediated inhibition of STAT3. Mol Cancer Ther. 2012;11:452–63.

    Article  CAS  PubMed  Google Scholar 

  96. Chen KF, Tai WT, Hsu CY, et al. Blockade of STAT3 activation by sorafenib derivatives through enhancing SHP-1 phosphatase activity. Eur J Med Chem. 2012;55:220–7.

    Article  CAS  PubMed  Google Scholar 

  97. Takami T, Kaposi-Novak P, Uchida K, et al. Loss of hepatocyte growth factor/c-Met signaling pathway accelerates early stages of N-nitrosodiethylamine induced hepatocarcinogenesis. Cancer Res. 2007;67:9844–51.

    Article  CAS  PubMed  Google Scholar 

  98. Firtina Karagonlar Z, Koc D, Iscan E, et al. Elevated hepatocyte growth factor expression as an autocrine c-Met activation mechanism in acquired resistance to sorafenib in hepatocellular carcinoma cells. Cancer Sci. 2016;107:407–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Qi XS, Guo XZ, Han GH, et al. MET inhibitors for treatment of advanced hepatocellular carcinoma: A review. World J Gastroenterol. 2015;21:5445–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Santoro A, Rimassa L, Borbath I, et al. Tivantinib for second-line treatment of advanced hepatocellular carcinoma: a randomised, placebo-controlled phase 2 study. Lancet Oncol. 2013;14:55–63.

    Article  CAS  PubMed  Google Scholar 

  101. Rimassa L, Santoro A, Daniele B, et al. Tivantinib, a new option for second-line treatment of advanced hepatocellular carcinoma? The experience of Italian centers. Tumori. 2015;101:139–43.

    Article  PubMed  Google Scholar 

  102. Pollak MN, Schernhammer ES, Hankinson SE. Insulin-like growth factors and neoplasia. Nat Rev Cancer. 2004;4:505–18.

    Article  CAS  PubMed  Google Scholar 

  103. Breuhahn K, Longerich T, Schirmacher P. Dysregulation of growth factor signaling in human hepatocellular carcinoma. Oncogene. 2006;25:3787–800.

    Article  CAS  PubMed  Google Scholar 

  104. Tovar V, Alsinet C, Villanueva A, et al. IGF activation in a molecular subclass of hepatocellular carcinoma and pre-clinical efficacy of IGF-1R blockage. J Hepatol. 2010;52:550–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Osipo C, Miele L. Hedgehog signaling in hepatocellular carcinoma: novel therapeutic strategy targeting hedgehog signaling in HCC. Cancer Biol Ther. 2006;5:238–9.

    Article  CAS  PubMed  Google Scholar 

  106. Jeng KS, Jeng CJ, Jeng WJ, et al. Sonic hedgehog pathway inhibitor mitigates mouse hepatocellular carcinoma. Am J Surg. 2015;210:554–60.

    Article  PubMed  Google Scholar 

  107. Zheng X, Gai X, Han S, et al. The human sulfatase 2 inhibitor 2,4-disulfonylphenyl-tert-butylnitrone (OKN-007) has an antitumor effect in hepatocellular carcinoma mediated via suppression of TGFB1/SMAD2 and Hedgehog/GLI1 signaling. Genes Chromosomes Cancer. 2013;52:225–36.

    Article  CAS  PubMed  Google Scholar 

  108. Shanmugam MK, Kannaiyan R, Sethi G. Targeting cell signaling and apoptotic pathways by dietary agents: role in the prevention and treatment of cancer. Nutr Cancer. 2011;63:161–73.

    Article  CAS  PubMed  Google Scholar 

  109. Ashkenazi A, Herbst RS. To kill a tumor cell: the potential of proapoptotic receptor agonists. J Clin Invest. 2008;118:1979–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nanjunda Swamy Shivananju or Anupam Bishayee.

Ethics declarations

Funding

This work was supported by a SERB Fast Track Research Grant (SB/FT/LS-297/2012) to NSS, by a NUHS Bench-to-Bedside grant to GS, by a University Malaya research grant (RP027C-14HTM), and by a University Malaya High Impact research grant (H-20001-E00002) awarded to CYL.

Conflict of Interest

SGS, VHK, PBS, CYL, MKS, FA, AD, GS, NSS and AB declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Swamy, S.G., Kameshwar, V.H., Shubha, P.B. et al. Targeting multiple oncogenic pathways for the treatment of hepatocellular carcinoma. Targ Oncol 12, 1–10 (2017). https://doi.org/10.1007/s11523-016-0452-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11523-016-0452-7

Keywords

Navigation