Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access March 1, 2006

Structural study of TiO2 thin films by micro-Raman spectroscopy

  • Ahti Niilisk EMAIL logo , Mart Moppel , Martti Pärs , Ilmo Sildos , Taavi Jantson , Tea Avarmaa , Raivo Jaaniso and Jaan Aarik
From the journal Open Physics

Abstract

The Raman spectroscopy method was used for structural characterization of TiO2 thin films prepared by atomic layer deposition (ALD) and pulsed laser deposition (PLD) on fused silica and single-crystal silicon and sapphire substrates. Using ALD, anatase thin films were grown on silica and silicon substrates at temperatures 125–425 °C. At higher deposition temperatures, mixed anatase and rutile phases grew on these substrates. Post-growth annealing resulted in anatase-to-rutile phase transitions at 750 °C in the case of pure anatase films. The films that contained chlorine residues and were amorphous in their as-grown stage transformed into anatase phase at 400 °C and retained this phase even after annealing at 900 °C. On single crystal sapphire substrates, phase-pure rutile films were obtained by ALD at 425 °C and higher temperatures without additional annealing. Thin films that predominantly contained brookite phase were grown by PLD on silica substrates using rutile as a starting material.

[1] M. Kadoshima, M. Hiratani, Y. Shimamoto, K. Torii, H. Miki, S. Kimura and T. Nabatame: “Rutile-type TiO2 thin film for high-k gate insulator”, Thin Solid Films, Vol. 424, (2003), pp. 224–228. http://dx.doi.org/10.1016/S0040-6090(02)01105-710.1016/S0040-6090(02)01105-7Search in Google Scholar

[2] M. Bibes, M. Bowen, A. Barthélémy, A. Anane, K. Bouzehoune, C. Carrétéro, E. Jacquet and J.-P. Contour: “Growth and characterization of TiO2 as a barrier for spin-polarized tunnelling”, Appl. Phys. Lett., Vol. 82, (2003), pp. 3269–3271. http://dx.doi.org/10.1063/1.156815910.1063/1.1568159Search in Google Scholar

[3] C.M. Perkins, B.B. Triplett, P.C. McIntyre, K.C. Saraswat, S. Haukka and M. Tuominen: “Electrical and materials properties of ZrO2 gate dielectrics grown by atomic layer chemical vapor deposition”, Appl. Phys. Lett., Vol. 78, (2001), pp. 2357–2359. http://dx.doi.org/10.1063/1.136233110.1063/1.1362331Search in Google Scholar

[4] T.-H. Perng, C.-H. Chien, C.-W. Chen, P. Lehnen and C.-Y. Chang: “High-density MIM capacitors with HfO2 dielectrics”, Thin Solid Films, Vol. 469-470, (2004), pp. 345–349. http://dx.doi.org/10.1016/j.tsf.2004.08.14810.1016/j.tsf.2004.08.148Search in Google Scholar

[5] M. Specht, H. Reisinger, F. Hofmann, T. Schulz, E. Landgraf, R.J. Luyken, W. Rösner, M. Grieb and L. Risch: “Charge trapping memory structures with Al2O3 trapping dielectric for high-temperature applications”, Solid State Electron., Vol. 49, (2005), pp. 716–720. http://dx.doi.org/10.1016/j.sse.2004.09.00310.1016/j.sse.2004.09.003Search in Google Scholar

[6] S. Zaitsu, S. Motokoshi, T. Jitsuno, M. Nakatsuka and T. Yamanaka: “Large-Area Optical Coatings with Uniform Thickness Grown by Surface Chemical Reactions for High-Power Laser Applications”, Jpn. J. Appl. Phys., Vol. 41, (2002), pp. 160–165. http://dx.doi.org/10.1143/JJAP.41.16010.1143/JJAP.41.160Search in Google Scholar

[7] Y. Zhao, T. Wang, D. Zhang, J. Shao and Z. Fan: “Laser conditioning and multi-shot laser damage accumulation effects of HfO2/SiO2 antireflective coatings”, Appl. Surf. Sci., Vol. 245, (2005), pp. 335–339. http://dx.doi.org/10.1016/j.apsusc.2004.10.02810.1016/j.apsusc.2004.10.028Search in Google Scholar

[8] T. Tawara, H. Gotoh, T. Akasata, N. Kobayashi and T. Saitoh: “Low-threshold lasing of InGaN vertical-cavity surface-emitting lasers with dielectric distributed Bragg reflectors”, Appl. Phys. Lett., Vol. 83, (2003), pp. 830–832. http://dx.doi.org/10.1063/1.159672810.1063/1.1596728Search in Google Scholar

[9] H. Tang, K. Prasad, R. Sanjinés and F. Lévy: “TiO2 anatase thin films as gas sensors”, Sensor. Actuat. B, Vol. 26, (1995), pp. 71–75. http://dx.doi.org/10.1016/0925-4005(94)01559-Z10.1016/0925-4005(94)01559-ZSearch in Google Scholar

[10] L.E. Depero, M. Ferroni, V. Guidi, G. Marca, G. Martinelli, P. Nelli, L. Sangaletti and G. Sberveglieri: “Preparation and micro-structural characterization of nano-sized thin film of TiO2-WO3 as a novel material with high sensitivity towards NO2”, Sensor. Actuat. B, Vol. 36, (1996), pp. 381–383. http://dx.doi.org/10.1016/S0925-4005(97)80100-110.1016/S0925-4005(97)80100-1Search in Google Scholar

[11] R.S. Niranjan, S.D. Sathaye and I.S. Mulla: “Bilayered tin oxide:zirconia thin film as a humidity sensor”, Sensor. Actuat. B, Vol. 81, (2001), pp. 64–67. http://dx.doi.org/10.1016/S0925-4005(01)00932-710.1016/S0925-4005(01)00932-7Search in Google Scholar

[12] P.-K. Shin: “The pH-sensing and light-induced drift properties of titanium dioxide thin films deposited by MOCVD”, Appl. Surf. Sci., Vol. 214, (2003), pp. 214–221. http://dx.doi.org/10.1016/S0169-4332(03)00340-410.1016/S0169-4332(03)00340-4Search in Google Scholar

[13] V. Pore, A. Rahtu, M. Leskelä, M. Ritala, T. Sajavaara and J. Keinonen: “Atomic Layer Deposition of Photocatalytic TiO2 Thin Films from Titanium Tetramethoxide and Water”, Chem. Vap. Deposition, Vol. 10, (2004), pp. 143–148. http://dx.doi.org/10.1002/cvde.20030628910.1002/cvde.200306289Search in Google Scholar

[14] L. Zhao, Y. Yu, L. Song, X. Hu and A. Larbot: “Synthesis and characterization of nanostructured titania film for photocatalysis”, Appl. Surf. Sci., Vol. 239, (2005), pp. 285–291. http://dx.doi.org/10.1016/j.apsusc.2004.05.27710.1016/j.apsusc.2004.05.277Search in Google Scholar

[15] C.C. Trapalis, P. Keivanidis, G. Kordas, M. Zaharescu, M. Crisan, A. Szatvanyi and M. Gartner: “TiO2(Fe3+) nanostructured thin films with antibacterial properties”, Thin Solid Films, Vol. 433, (2003), pp. 186–190. http://dx.doi.org/10.1016/S0040-6090(03)00331-610.1016/S0040-6090(03)00331-6Search in Google Scholar

[16] I. Losito, A. Amorisco, F. Palmisano and P.G. Zambonin: “X-ray photoelectron spectroscopy characterization of composite TiO2-poly(vinylidenefluoride) films synthesized for applications in pesticide photocatalytic degradation”, Appl. Surf. Sci., Vol. 240, (2005), pp. 180–188. http://dx.doi.org/10.1016/j.apsusc.2004.06.06810.1016/j.apsusc.2004.06.068Search in Google Scholar

[17] S. Ichikawa and R. Doi: “Photoelectrocatalytic hydrogen production from water on transparent thin film titania of different crystal structures and quantum efficiency characteristics”, Thin Solid Films, Vol. 292, (1997), pp. 130–134. http://dx.doi.org/10.1016/S0040-6090(96)09090-610.1016/S0040-6090(96)09090-6Search in Google Scholar

[18] B. O'Regan and M. Grätzel: “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films”, Nature, Vol. 353, (1991), pp. 737–739. http://dx.doi.org/10.1038/353737a010.1038/353737a0Search in Google Scholar

[19] E.-L. Lakomaa, S. Haukka and T. Suntola: “Atomic layer growth of TiO2 on silica”, Appl. Surf. Sci., Vol. 60/61, (1992), pp. 742–748. http://dx.doi.org/10.1016/0169-4332(92)90506-S10.1016/0169-4332(92)90506-SSearch in Google Scholar

[20] M. Ritala, M. Leskelä, E. Nykänen, P. Soininen and L. Niinistö: “Growth of titanium dioxide thin films by atomic layer epitaxy”, Thin Solid Films, Vol. 225, (1993), pp. 288–295. http://dx.doi.org/10.1016/0040-6090(93)90172-L10.1016/0040-6090(93)90172-LSearch in Google Scholar

[21] J. Aarik, A. Aidla, T. Uustare and V. Sammelselg: “Morphology and structure of TiO2 thin films grown by atomic layer deposition”, J. Cryst. Growth, Vol. 148, (1995), pp. 268–275. http://dx.doi.org/10.1016/0022-0248(94)00874-410.1016/0022-0248(94)00874-4Search in Google Scholar

[22] M.A. Cameron, I.P. Gartland, J.A. Smith, S.F. Diaz and S.M. George: “Atomic Layer Deposition of SiO2 and TiO2 in Alumina Tubular Membranes: Pore Reduction and Effect of Surface Species on Gas Transport”, Langmuir, Vol. 16, (2000), pp. 7435–7444. http://dx.doi.org/10.1021/la991698110.1021/la9916981Search in Google Scholar

[23] A. Niilisk, A. Rosental, T. Uustare, A. Kasikov and A. Tarre: “Chloride atomic-layer chemical vapor deposition of TiO2 with a chloride pretreatment of substrates”, J. Phys. IV, Vol. 11, (2001), pp. Pr11-103-108. Search in Google Scholar

[24] J. Aarik, A. Aidla, H. Mändar and T. Uustare: “Atomic layer deposition of titanium dioxide from TiCl4 and H2O: investigation of growth mechanism”, Appl. Surf. Sci., Vol. 172, (2001), pp. 148–158. http://dx.doi.org/10.1016/S0169-4332(00)00842-410.1016/S0169-4332(00)00842-4Search in Google Scholar

[25] J. Aarik, A. Aidla, H. Mändar, T. Uustare, M. Schuisky and A. Hårsta: “Atomic layer growth of epitaxial TiO2 thin films from TiCl4 and H2O on α-Al2O3 substrates”, J. Cryst. Growth, Vol. 242, (2002), pp. 189–198. http://dx.doi.org/10.1016/S0022-0248(02)01426-410.1016/S0022-0248(02)01426-4Search in Google Scholar

[26] J. Aarik, A. Aidla, T. Uustare, K. Kukli, V. Sammelselg, M. Ritala and M. Leskelä: “Atomic layer deposition of TiO2 thin films from TiI4 and H2O”, Appl. Surf. Sci., Vol. 193, (2002), pp. 277–286. http://dx.doi.org/10.1016/S0169-4332(02)00497-X10.1016/S0169-4332(02)00497-XSearch in Google Scholar

[27] M. Schuisky, K. Kukli, J. Aarik, J. Lu and A. Hårsta: “Epitaxial growth of TiO2 films in a hydroxyl-free atomic layer deposition process”, J. Cryst. Growth, Vol. 235, (2002), pp. 293–299. http://dx.doi.org/10.1016/S0022-0248(01)01804-810.1016/S0022-0248(01)01804-8Search in Google Scholar

[28] L. Forro, O. Chauvet, D. Emin, L. Zuppiroli, H. Berger and F. Lévi: “High mobility n-type charge carriers in large single crystals of anatase (TiO2)”, J. Appl. Phys., Vol. 75, (1994), pp. 633–635. http://dx.doi.org/10.1063/1.35580110.1063/1.355801Search in Google Scholar

[29] M. Kingler and W. Weppner: “In-situ formation of p-n junctions in semiconducting TiO2”, Appl. Phys. A, Vol. 59, (1994), pp. 239–243. http://dx.doi.org/10.1007/BF0034822610.1007/BF00348226Search in Google Scholar

[30] G. Wang, H. Chen, H. Zhang, Y. Shen, C. Yuan, Z. Lu, G. Wang and W. Yang: “Current-voltage characteristics of TiO2/PPy complex films”, Phys. Lett. A, Vol. 237, (1998), pp. 165–168. http://dx.doi.org/10.1016/S0375-9601(97)00837-210.1016/S0375-9601(97)00837-2Search in Google Scholar

[31] G.A. Tompsett, G.A. Bowmaker, R.P. Cooney, J.B. Metson, K.A. Rodgers and J.M. Seakins: “The Raman spectrum of brookite, TiO2 (Pbca, Z = 8)”, J. Raman Spectrosc., Vol. 26, (1995), pp. 57–62. http://dx.doi.org/10.1002/jrs.125026011010.1002/jrs.1250260110Search in Google Scholar

[32] M.P. Moret, R. Zallen, D.P. Vijay and S.B. Desu: “Brookite-rich titania films made by pulsed laser deposition”, Thin Solid Films, Vol. 366, (2000), pp. 8–10. http://dx.doi.org/10.1016/S0040-6090(00)00862-210.1016/S0040-6090(00)00862-2Search in Google Scholar

[33] K. Lagarec and S. Desgreniers: “Raman study of single crystal anatase TiO2 up to 70 GPa”, Solid State Commun., Vol. 94, (1995), pp. 519–524. http://dx.doi.org/10.1016/0038-1098(95)00129-810.1016/0038-1098(95)00129-8Search in Google Scholar

[34] V. Sammelselg, A. Rosental, A. Tarre, L. Niinistö, K. Heiskanen, K. Ilmonen, L.-S. Johansson and T. Uustare: “TiO2 thin films by atomic layer deposition: a case of uneven growth at low temperature”, Appl. Surf. Sci., Vol. 134, (1998), pp. 78–86. http://dx.doi.org/10.1016/S0169-4332(98)00224-410.1016/S0169-4332(98)00224-4Search in Google Scholar

[35] J. Aarik, A. Aidla, H. Mändar and V. Sammelselg: “Anomalous effect of temperature on atomic layer deposition of titanium dioxide”, J. Cryst. Growth, Vol. 220, (2000), pp. 531–537. http://dx.doi.org/10.1016/S0022-0248(00)00897-610.1016/S0022-0248(00)00897-6Search in Google Scholar

[36] T. Jantson, T. Avarmaa, H. Mändar, T. Uustare and R. Jaaniso: “Nanocrystalline Cr2O3-TiO2 thin films by pulsed laser deposition”, Sensor. Actuat. B, Vol. 109, (2005), pp. 24–31. http://dx.doi.org/10.1016/j.snb.2005.03.01410.1016/j.snb.2005.03.014Search in Google Scholar

[37] V. Sammelselg, E. Rauhala, K. Arstila, A. Zakharov, J. Aarik, A. Kikas, J. Karlis, A. Tarre, A. Seppälä, J. Asari and I. Martinson: “Study of thin oxide films by electron, ion and synchrotron radiation beams”, Mikrochim. Acta, Vol. 139, (2002), pp. 165–169. Search in Google Scholar

Published Online: 2006-3-1
Published in Print: 2006-3-1

© 2006 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 21.5.2024 from https://www.degruyter.com/document/doi/10.1007/s11534-005-0009-3/html
Scroll to top button