Skip to main content
Log in

Starvation Driven Diffusion as a Survival Strategy of Biological Organisms

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

The purpose of this article is to introduce a diffusion model for biological organisms that increase their motility when food or other resource is insufficient. It is shown in this paper that Fick’s diffusion law does not explain such a starvation driven diffusion correctly. The diffusion model for nonuniform Brownian motion in Kim (Einstein’s random walk and thermal diffusion, preprint http://amath.kaist.ac.kr/papers/Kim/31.pdf, 2013) is employed in this paper and a Fokker–Planck type diffusion law is obtained. Lotka–Volterra type competition systems with spatial heterogeneity are tested, where one species follows the starvation driven diffusion and the other follows the linear diffusion. In heterogeneous environments, the starvation driven diffusion turns out to be a better survival strategy than the linear one. Various issues such as the global asymptotic stability, convergence to an ideal free distribution, the extinction and coexistence of competing species are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Beck, M., & Wayne, C. E. (2011). Using global invariant manifolds to understand metastability in the Burgers equation with small viscosity. SIAM Rev., 53(1), 129–153.

    Article  MathSciNet  MATH  Google Scholar 

  • Berg, H. C., & Brown, D. A. (1972). Chemotaxis in Escherichia coli analysed by three-dimensional tracking. Nature, 239(5374), 500–504.

    Article  Google Scholar 

  • Burnstock, G., & Verkhratsky, A. (2009). Evolutionary origins of the purinergic signalling system. Acta Physiol. (Oxf.), 195(4), 415–447.

    Article  Google Scholar 

  • Chapman, S. (1928). On the Brownian displacements and thermal diffusion of grains suspended in a non-uniform fluid. Proc. R. Soc. Lond. A, 119, 34–54.

    Article  Google Scholar 

  • Chapman, S., & Cowling, T. G. (1990). The mathematical theory of nonuniform gases (3rd ed.). Cambridge: Cambridge Mathematical Library, Cambridge University Press. An account of the kinetic theory of viscosity, thermal conduction and diffusion in gases, in co-operation with, Burnett, D., with a foreword by Carlo Cercignani.

    Google Scholar 

  • Collett, M., Despland, E., Simpson, S. J., & Krakauer, D. C. (1998). Spatial scales of desert locust gregarization. Proc Natl. Acad. Sci., 95(22), 13052–13055.

    Article  Google Scholar 

  • Cosner, C., & Lou, Y. (2003). Does movement toward better environments always benefit a population? J. Math. Anal. Appl., 277(2), 489–503.

    Article  MathSciNet  MATH  Google Scholar 

  • Dieckman, U., O’Hara, B., & Weisser, W. (1999). The evolutionary ecology of dispersal. Trends Ecol. Evol., 14(3), 88–90.

    Article  Google Scholar 

  • Dockery, J., Hutson, V., Mischaikow, K., & Pernarowski, M. (1998). The evolution of slow dispersal rates: a reaction diffusion model. J. Math. Biol., 37(1), 61–83.

    Article  MathSciNet  MATH  Google Scholar 

  • Ishii, S., & Kuwahara, Y. (1967). An aggregation pheromone of the German cockroach Blattella germanica l. (Orthoptera: Blattelidae). Appl. Entomol. Zool., 2, 203–217.

    Google Scholar 

  • Johnson, M., & Gaines, M. (1990). Evolution of dispersal: theoretical models and empirical tests using birds and mammals. Annu. Rev. Ecol. Syst., 21, 449–480.

    Article  Google Scholar 

  • Johnson, E. C., Kazgan, N., Bretz, C. A., Forsberg, L. J., Hector, C. E., Worthen, R. J., Onyenwoke, R., & Brenman, J. E. (2010). Altered metabolism and persistent starvation behaviors caused by reduced AMPK function in Drosophila. PLoS ONE, 5(9), e12799.

    Article  Google Scholar 

  • Kareiva, P., & Odell, G. (1987). Swarms of predators exihibit “preytaxis” if individual predators use area-restricted search. Am. Nat., 130, 233–270.

    Article  Google Scholar 

  • Keeling, M. (1999). Spatial models of interacting populations. In J. McGlade (Ed.), Advanced ecological theory: principles and applications, Oxford: Blackwell Science.

    Google Scholar 

  • Keller, E. F., & Segel, L. A. (1971). Model for chemotaxis. J. Theor. Biol., 30, 225–234.

    Article  Google Scholar 

  • Kim, Y.-J. (2013). Einstein’s random walk and thermal diffusion. Preprint http://amath.kaist.ac.kr/papers/Kim/31.pdf.

  • Kim, Y.-J., & Tzavaras, A. E. (2001). Diffusive N-waves and metastability in the Burgers equation. SIAM J. Math. Anal., 33(3), 607–633 (electronic).

    Article  MathSciNet  MATH  Google Scholar 

  • Kim, Y.-J., Kwon, O., & Li, F. (2013a). Evolution of dispersal toward fitness with starvation driven diffusion. Preprint http://amath.kaist.ac.kr/papers/Kim/29.pdf.

  • Kim, Y.-J., Kwon, O., & Li, F. (2013b). Global asymptotic stability and the ideal free distribution in a starvation driven diffusion. J. Math. Biol. doi:10.1007/s00285-013-0674-6.

    Google Scholar 

  • Larsen, S. H., Reader, R. W., Kort, E. N., Tso, W. W., & Adler, J. (1974). Change in direction of flagellar rotation is the basis of the chemotactic response in Escherichia coli. Nature, 249(452), 74–77.

    Article  Google Scholar 

  • Lee, H., Choi, M. K., Lee, D., Kim, H. S., Hwang, H., Kim, H., Park, S., Paik, Y. K., & Lee, J. (2011). Nictation, a dispersal behavior of the nematode Caenorhabditis elegans, is regulated by il2 neurons. Nat. Neurosci., 15(1), 107–112.

    Article  MATH  Google Scholar 

  • Lou, Y. (2006). On the effects of migration and spatial heterogeneity on single and multiple species. J. Differ. Equ., 223(2), 400–426.

    Article  MATH  Google Scholar 

  • Lou, Y., & Ni, W.-M. (1999). Diffusion vs cross-diffusion: an elliptic approach. J. Differ. Equ., 154(1), 157–190.

    Article  MathSciNet  MATH  Google Scholar 

  • Lou, Y., Ni, W.-M., & Wu, Y. (1998). On the global existence of a cross-diffusion system. Discrete Contin. Dyn. Syst., 4(2), 193–203.

    Article  MathSciNet  MATH  Google Scholar 

  • McPeek, M., & Holt, R. (1992). The evolution of dispersal in spatially and temporally varying environments. Am. Nat., 140, 1010–1027.

    Article  Google Scholar 

  • Mimura, M., & Kawasaki, K. (1980). Spatial segregation in competitive interaction–diffusion equations. J. Math. Biol., 9(1), 49–64.

    Article  MathSciNet  MATH  Google Scholar 

  • Mittal, N., Budrene, E. O., Brenner, M. P., & van Oudenaarden, A. (2003). Motility of Escherichia coli cells in clusters formed by chemotactic aggregation. Proc. Natl. Acad. Sci. USA, 100(23), 13259–13263.

    Article  Google Scholar 

  • Okubo, A., & Levin, S. A. (2001). Interdisciplinary applied mathematics: Vol. 14. Diffusion and ecological problems: modern perspectives (2nd ed.). New York: Springer.

    Book  Google Scholar 

  • Ott, S. R., Verlinden, H., Rogers, S. M., Brighton, C. H., Quah, P. S., Vleugels, R. K., Verdonck, R., & van den Broeck, J. (2012). Critical role for protein kinase a in the acquisition of gregarious behavior in the desert locust. Proc Natl. Acad. Sci., 109(7), E381–E387.

    Article  Google Scholar 

  • Overton, J. M., & Williams, T. D. (2004). Behavioral and physiologic responses to caloric restriction in mice. Physiol. Behav., 81, 749–754.

    Article  Google Scholar 

  • Sakurada, S., Shido, O., Sugimoto, N., Hiratsuka, Y., Yoda, T., & Kanosue, K. (2000). Autonomic and behavioural thermoregulation in starved rats. J. Physiol., 526, 417–424.

    Article  Google Scholar 

  • Shigesada, N., Kawasaki, K., & Teramoto, E. (1979). Spatial segregation of interacting species. J. Theor. Biol., 79, 83–99.

    Article  MathSciNet  Google Scholar 

  • Silverman, M., & Simon, M. (1974). Flagellar rotation and the mechanism of bacterial motility. Nature, 249(452), 73–74.

    Article  Google Scholar 

  • Tindall, M. J., Maini, P. K., Porter, S. L., & Armitage, J. P. (2008a). Overview of mathematical approaches used to model bacterial chemotaxis. II. Bacterial populations. Bull. Math. Biol., 70(6), 1570–1607.

    Article  MathSciNet  MATH  Google Scholar 

  • Tindall, M. J., Porter, S. L., Maini, P. K., Gaglia, G., & Armitage, J. P. (2008b). Overview of mathematical approaches used to model bacterial chemotaxis. I. The single cell. Bull. Math. Biol., 70(6), 1525–1569.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work has been started during Y.J.K.’s visit to the Center for Partial Differential Equations at East China Normal University, Shanghai, China. He would like to thank for the hospitality and support provided by the center during his stay. In particular, he wants to thank Wei-Ming Ni for his motivating questions and valuable lectures related to this work. Anonymous reviewers’ suggestions improved this article considerably and are greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Jung Kim.

Additional information

This research has been supported by National Research Foundation of Korea (no. 013-2011-1-C00002).

Appendix: Derivation of Non-isothermal Diffusion

Appendix: Derivation of Non-isothermal Diffusion

Let \(\{x^{i}:i\in\mathbb{Z}\}\) be a mesh grid and x i+1/2:=(x i+x i+1)/2 be the middle point between two adjacent grid points. Let V(x i) be the number of particles at x i, which jump randomly to one of two adjacent grid points every time interval Δt(x i). Define the walk length by Δx(x i+1/2):=x i+1x i and let Δx(x i):=x i+1/2x i−1/2.

Then, the particle flux that crosses the a midpoint x i+1/2 from left to right is \({V\over2\varDelta t} |_{x=x^{i}}\) and the one from right to left is \({V\over2\varDelta t} |_{x=x^{i+1}}\). Notice that the particle density is given by \(v={V\over\varDelta x}\), and hence the net flux is

$$ \mathbf{f}\bigl(x^{i+{1\over2}}\bigr)= {\varDelta x\,v\over2\varDelta t} \bigg|_{x^{i}}-{\varDelta x \,v\over2\varDelta t} \bigg|_{x^{i+1}} =-{\varDelta x|_{x^{i+{1\over2}}}\over2} \biggl({{\varDelta x\over \varDelta t}v |_{x^{i}}-{\varDelta x\over\varDelta t}v |_{x^{i+1}}\over x^i-x^{i+1}} \biggr). $$
(41)

If the Brownian motion or the random walk is in a homogeneous environment, we may assume that the mean free path Δx and the collision time Δt are constant, and hence \({\varDelta x\over \varDelta t}\) in the parenthesis of (41) can be taken out. However, if the temperature is not spatially constant, for example, they depend on the space variable and should stay inside. In conclusion, the diffusion flux for a non-isothermal case in n space dimensions is given by

$$ \mathbf{f}= -{D\over S}\nabla (S v ),\quad D:= {|\varDelta x|^2\over 2n\varDelta t},\ S:={\varDelta x\over\varDelta t}, $$
(42)

where S and D are called the walk speed and diffusivity, respectively. Notice that the walk length is given by |Δx|=2nD/S. Therefore, the corresponding non-isothermal diffusion equation is

$$(3)\quad v_t=\nabla\cdot \biggl( {D\over S}\nabla (S v ) \biggr). $$

One might numerically check that this diffusion model gives the correct behavior of nonuniform random walks with nonconstant Δx and Δt. The numerical solutions of this diffusion model have been compared with Monte Carlo simulations in Kim (2013).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cho, E., Kim, YJ. Starvation Driven Diffusion as a Survival Strategy of Biological Organisms. Bull Math Biol 75, 845–870 (2013). https://doi.org/10.1007/s11538-013-9838-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-013-9838-1

Keywords

Navigation