Skip to main content
Log in

Asymptotic Analysis of First Passage Time Problems Inspired by Ecology

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

A hybrid asymptotic–numerical method is formulated and implemented to accurately calculate the mean first passage time (MFPT) for the expected time needed for a predator to locate small patches of prey in a 2-D landscape. In our analysis, the movement of the predator can have both a random and a directed component, where the diffusivity of the predator is isotropic but possibly spatially heterogeneous. Our singular perturbation methodology, which is based on the assumption that the ratio \(\varepsilon \) of the radius of a typical prey patch to that of the overall landscape is asymptotically small, leads to the derivation of an algebraic system that determines the MFPT in terms of parameters characterizing the shapes of the small prey patches together with a certain Green’s function, which in general must be computed numerically. The expected error in approximating the MFPT by our semi-analytical procedure is smaller than any power of \({-1/\log \varepsilon }\), so that our approximation of the MFPT is still rather accurate at only moderately small prey patch radii. Overall, our hybrid approach has the advantage of eliminating the difficulty with resolving small spatial scales in a full numerical treatment of the partial differential equation (PDE). Similar semi-analytical methods are also developed and implemented to accurately calculate related quantities such as the variance of the mean first passage time (VMFPT) and the splitting probability. Results for the MFPT, the VMFPT, and splitting probability obtained from our hybrid methodology are validated with corresponding results computed from full numerical simulations of the underlying PDEs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Amoruso C, Lagache T, Holcman D (2011) Modeling the early steps of cytoplasmic trafficking in viral infection and gene delivery. SIAM J Appl Math 71(6):2334–2358

    Article  MathSciNet  MATH  Google Scholar 

  • Bartumeus F, Da Luz MGE, Viswanathan GM, Catalan J (2005) Animal search strategies: a quantitative random-walk analysis. Ecology 86(11):3078–3087

    Article  Google Scholar 

  • Benichou O, Voituriez R (2014) From first-passage times of random walks in confinement to geometry-controlled kinetics. Phys Rep 539:225–284

    Article  MathSciNet  Google Scholar 

  • Berg HC (1983) Random walks in biology. Princeton University Press, Princeton

    Google Scholar 

  • Bressloff PC, Newby J (2013) Stochastic models of intracellular transport. Rev Mod Phys 85:135–196

    Article  Google Scholar 

  • Bressloff PC, Earnshaw BA, Ward MJ (2008) Diffusion of protein receptors on a cylindrical dendritic membrane with partially absorbing traps. SIAM J Appl Math 68(5):1223–1246

    Article  MathSciNet  MATH  Google Scholar 

  • Caginalp C, Chen X (2012) Analytical and numerical results for an escape problem. Arch Ration Mech Anal 203:329–342

    Article  MathSciNet  MATH  Google Scholar 

  • Chen X, Friedman A (2011) Asymptotic analysis for the narrow escape problem. SIAM J Math Anal 43:2542–2563

    Article  MathSciNet  MATH  Google Scholar 

  • Chevalier C, Benichou O, Meyer B, Voituriez R (2011) First passage quantities of Brownian motion in a bounded domain with multiple targets: a unified approach. J Phys A Math Theor 44:025002

  • Cheviakov A, Ward MJ (2011) Optimizing the fundamental eigenvalue of the Laplacian in a sphere with interior traps. Math Comp Mode 53:1394–1409

    Article  MathSciNet  MATH  Google Scholar 

  • Cobbold CA, Lutscher F (2014) Mean occupancy time: linking mechanistic movement models, population dynamics and landscape ecology to population persistence. J Math Biol 68(3):549–579

    Article  MathSciNet  MATH  Google Scholar 

  • Condamin S, Benichou O, Moreau M (2007) Random walks and brownian motion: a method of computation of first-passage times and related quantities in confined geometries. Phys Rev E 75:021111

  • Coombs D, Straube R, Ward MJ (2009) Diffusion on a sphere with localized traps: mean first passage time, eigenvalue asymptotics, and Fekete points. SIAM J Appl Math 70(1):302–332

    Article  MathSciNet  MATH  Google Scholar 

  • Dijkstra W, Hochstenbach ME (2008) Numerical approximation of the logarithmic capacity, CASA Report 08-09, Technical U. Eindhoven (preprint)

  • Dushek O, Coombs D (2008) Analysis of serial engagement and peptide-MHC transport in T cell receptor microclusters. Biophys J 94(9):3447–3460

    Article  Google Scholar 

  • FlexPDE6, PDE Solutions Inc. http://www.pdesolutions.com

  • Frair J, Merrill E, Visscher D, Fortin D, Beyer H, Morales J (2005) Scales of movement by elk (Cervus elaphus) in response to heterogeneity in forage resources and predation risk. Landsc Ecol 20(3):273–287

    Article  Google Scholar 

  • Gardiner C (2009) Stochastic methods, a handbook for the natural and social sciences, 4th edn. Springer, Berlin

    MATH  Google Scholar 

  • Gurarie E, Ovaskainen O (2011) Characteristic spatial and temporal scales unify models of animal movement. Am Nat 178(1):113–123

    Article  Google Scholar 

  • Gurarie E, Ovaskainen O (2013) Towards a general formalization of encounter rates in ecology. Theor Ecol 6(2):189–202

    Article  Google Scholar 

  • Holcman D, Schuss Z (2014) The narrow escape problem. SIAM Rev 56(2):213–257

    Article  MathSciNet  MATH  Google Scholar 

  • Holgate P (1971) Random walk models for animal behavior. In: Patil G, Pielou E, Waters W (eds) Stat Ecol, vol 2. Penn. State Univ. Press, pp 1–12

    Google Scholar 

  • Isaacson S, Newby J (2013) Uniform asymptotic approximation of diffusion to a small target. Phys Rev E 88:012820

  • James A (1999) Effects of industrial development on the predator-prey relationship between wolves and caribou in Northeastern Alberta, Ph.D thesis, University of Alberta

  • James A, Stuart-Smith A (2000) Distribution of caribou and wolves in relation to linear corridors. J Wildl Manag 64(1):154–159

    Article  Google Scholar 

  • James A, Plank MJ, Brown R (2008) Optimizing the encounter rate in biological interactions: ballistic versus lévy versus Brownian strategies. Phys Rev E Stat Nonlinear Soft Matter Phys 78(1):051128

    Article  Google Scholar 

  • James A, Pitchford JW, Plank MJ (2010) Efficient or inaccurate? Analytical and numerical modelling of random search strategies. Bull Math Biol 72(4):896–913

    Article  MathSciNet  MATH  Google Scholar 

  • Kareiva P, Mullen A, Southwood R (1990) Population dynamics in spatially complex environments: theory and data and discussion. Phil Trans Biol Sci 330:175–190

    Article  Google Scholar 

  • Kevorkian J, Cole J (1996) Multiple scale and singular perturbation methods, applied mathematical sciences, vol 114. Springer, New York

    Book  Google Scholar 

  • Kolokolnikov T, Titcombe M, Ward MJ (2005) Optimizing the fundamental Neumann eigenvalue for the Laplacian in a domain with small traps. Eur J Appl Math 16(2):161–200

    Article  MathSciNet  MATH  Google Scholar 

  • Lagache T, Holcman D (2008) Effective motion of a virus trafficking inside a biological cell. SIAM J Appl Math 68(4):1146–1167

  • Lagache T, Holcman D (2008b) Quantifying the intermittent transport in the cell cytoplasm. Phys Rev E 77:030901(R)

  • Lagache T, Dauty E, Holcman D (2009) Quantitative analysis of virus and plasmid trafficking in cells. Phys Rev E 79:011921

    Article  Google Scholar 

  • Lima SL, Zollner PA (1996) Towards a behavioral ecology of ecological landscapes. Trends Ecol Evol 11(3):131–135

    Article  Google Scholar 

  • McKenzie H, Lewis M, Merrill E (2009) First passage time analysis of animal movement and insights into the functional response. Bull Math Biol 71:107–129

    Article  MathSciNet  MATH  Google Scholar 

  • McKenzie H, Merrill E, Spiteri R, Lewis M (2012) How linear features alter predator movement and the functional response. Interface Focus 2:205–216

    Article  Google Scholar 

  • Moorcroft P, Lewis MA (2006) Mechanistic home range analysis. Princeton University Press, Princeton

    Google Scholar 

  • Okubo A, Levin S (1991) Diffusion and ecological problems. Springer, Berlin

    Google Scholar 

  • Pillay S, Ward MJ, Peirce A, Kolokolnikov T (2010) An asymptotic analysis of the mean first passage time for narrow escape problems: part I: two-dimensional domains. SIAM J. Multiscale Model Simul 8(3):803–835

    Article  MathSciNet  MATH  Google Scholar 

  • Ransford T (1995) Potential theory in the complex plane, London Math. Soc. Stud. Texts 28. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Redner S (2001) A guide to first-passage time processes. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Singer A, Schuss Z (2007) Activation through a narrow opening. SIAM J Appl Math 68(1):98–108

    Article  MathSciNet  MATH  Google Scholar 

  • Singer A, Schuss Z, Holcman D (2006) Narrow escape, part ii: the circular disk. J Stat Phys 122(3):465–489

    Article  MathSciNet  MATH  Google Scholar 

  • Schuss Z (2010) Theory and applications of stochastic processes; an analytical approach, Applied Mathematical Sciences, vol 170. Springer, Berlin

  • Schuss Z (2012) The narrow escape problem—a short review of recent results. J Sci Comput 53(1):194–210

    Article  MathSciNet  MATH  Google Scholar 

  • Skellam J (1951) Random dispersal in theoretical populations. Biometrika 38:196–218

    Article  MathSciNet  MATH  Google Scholar 

  • Straube R, Ward MJ, Falcke M (2007) Reaction-rate of small diffusing molecules on a cylindrical membrane. J Stat Phys 129(2):377–405

    Article  MathSciNet  MATH  Google Scholar 

  • Stroud AH (1971) Approximate calculation of multiple integrals. Prentice-Hall, Englewood Cliffs

    MATH  Google Scholar 

  • Taflia A, Holcman D (2007) Dwell time of a brownian molecule in a microdomain with traps and a small hole on the boundary. J Chem Phys 126:234107

  • Titcombe M, Ward MJ (2000) An asymptotic study of oxygen transport from multiple capillaries to skeletal muscle tissue. SIAM J Appl Math 60(5):1767–1788

    Article  MathSciNet  MATH  Google Scholar 

  • Tsaneva K, Burgo A, Galli T, Holcman D (2009) Modeling neurite growth. Biophys J 96(3):840–857

    Article  Google Scholar 

  • Turchin P (1991) Translanting foraging movements in heterogeneous environments into the spatial distribution of foragers. Ecology 72(4):1253–1266

    Article  Google Scholar 

  • Turchin P (1998) Quantitative analysis of movement: measuring and modeling population redistribution in animals and plants. Sinauer Associates, Sunderland

    Google Scholar 

  • Tzou J, Kolokonikov T (2015) Mean first passage time for a small rotating trap inside a reflective disk. SIAM J Multiscale Model Simul (to appear)

  • Ward MJ, Keller JB (1993) Strong localized perturbations of eigenvalue problems. SIAM J Appl Math 53(3):770–798

    Article  MathSciNet  MATH  Google Scholar 

  • Ward MJ, Henshaw WD, Keller J (1993) Summing logarithmic expansions for singularly perturbed eigenvalue problems. SIAM J Appl Math 53(3):799–828

    Article  MathSciNet  MATH  Google Scholar 

  • Whittington J, St Clair CC (2004) Path tortuosity and the permeability of roads and trails to wolf movement. Ecol Soc 9(1):4

    Google Scholar 

  • Whittington J, St Clair CC, Mercer G (2005) Spatial responses of wolves to roads and trails in mountain valleys. Ecol Appl 15:543–553

    Article  Google Scholar 

Download references

Acknowledgments

V.K. acknowledges support from the Pacific Institute for Mathematical Sciences International Graduate Training Center in Mathematical Biology. J.C.T. was supported by an AARMS (Atlantic Canada) Postdoctoral Fellowship. D.C. and M.J.W. gratefully acknowledge grant support from NSERC (Canada). We are grateful to an anonymous referee for helping clarify the result in Fig. 9.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Ward.

Appendix: The Logarithmic Capacitance of a Two-Disk Cluster

Appendix: The Logarithmic Capacitance of a Two-Disk Cluster

We first derive the result (50) for the logarithmic capacitance \(d_{1c}\) of two disjoint circular patches \(\varOmega _{1,0}\) and \(\varOmega _{1,1}\) of radii \(a_0\) and \(a_1\), respectively. Since \(d_{1c}\) is invariant under coordinate rotations, we can without loss of generality choose the centers of the circles to lie along the horizontal \(y_2=0\) axis at some \(y_1=b_0>0\) and \(y_1=-b_1<0\), respectively.

For this special two-trap cluster, the inner problem (49) with \(\mathbf y =(y_1,y_2)\), is

$$\begin{aligned} \varDelta _\mathbf{y } q_c&= 0 , \quad \mathbf y \notin \varOmega _{1,j} , \quad j=0,1 \,; \quad q=0 , \quad \mathbf y \in \partial \varOmega _{1,j} , \quad j=0,1, \nonumber \\ q&\sim \log |\mathbf y | , \quad \hbox {as} \quad |\mathbf y |= (y_1^2+y_2^2)^{1/2} \rightarrow \infty , \end{aligned}$$
(75)

where \(\varOmega _{1,1}\) and \(\varOmega _{1,0}\) are the circles \((y_1+b_1)^2+y_2^2=a_1^2\) and \((y_1-b_0)^2+y_2^2=a_0^2\), respectively. The logarithmic capacitance \(d_{1c}\) of the two-circle cluster is defined in terms of the solution to (75) by the far-field condition

$$\begin{aligned} q_c - \log |\mathbf y | = -\log {d} + o(1) , \quad \hbox {as} \quad |\mathbf y |=(y_1^2+y_2^2)^{1/2} \rightarrow \infty . \end{aligned}$$
(76)

To solve (75), we introduce bipolar coordinates \(\xi \) and \(\eta \) defined by

$$\begin{aligned} y_1 = \frac{c \sinh \xi }{\cosh \xi -\cos \eta } , \quad y_2 = \frac{c \sin \eta }{\cosh \xi -\cos \eta } . \end{aligned}$$
(77)

Then, \(|\mathbf y |\rightarrow \infty \) corresponds to \(\rho \equiv (\xi ^2+\eta ^2)^{1/2}\rightarrow 0\). From (77), we obtain \(|\mathbf y |\sim {2c/\rho }\) as \(|\mathbf y |\rightarrow \infty \). Therefore, the far-field behavior in (75) is equivalent to \(q_c\sim -\log \rho \) as \(\rho =(\xi ^2+\eta ^2)^{1/2}\rightarrow 0\).

With bipolar coordinates, lines of constant \(\xi \) map to disks of the form \((y_1-y_{c})^2+y_2^2=a^2\), where \(y_c={c/\tanh \xi }\) and \(a={c/|\sinh \xi |}\). As such, the right circle \(\varOmega _{1,0}\) with center \(\mathbf y =(b_0,0)\) and radius \(a_0\) corresponds to \(\xi =\xi _0>0\), where

$$\begin{aligned} a_0 = {c/\sinh \xi _0} , \quad b_0 = {c/\tanh \xi _0} . \end{aligned}$$
(78)

In contrast, the left circle \(\varOmega _{1,1}\) with center \(\mathbf y =(-b_1,0)\) and radius \(a_1\) corresponds to \(\xi =-\xi _1<0\), so that \(\xi _1>0\), where

$$\begin{aligned} a_1 = {c/\sinh \xi _1} , \quad b_1 = {c/\tanh \xi _1} . \end{aligned}$$
(79)

We label the center-to-center distance between the two disks as \(l\), so that \(l=b_0+b_1\).

From (78) and (79), we obtain that \(\xi _0>0\), \(\xi _1>0\) and \(c\) are determined in terms of the disk radii \(a_0\) and \(a_1\), and the center-to-center distance \(l\), by the three equations

$$\begin{aligned} a_0={c/\sinh \xi _0} , \quad a_1={c/\sinh \xi _1} , \quad l = {c/\tanh \xi _0} + {c/\tanh \xi _1} . \end{aligned}$$
(80)

From this system, we readily derive that \(l = \sqrt{c^2 + a_0^2} + \sqrt{c^2 + a_1^2}\). By squaring this relation, we can solve for \(c\) in terms of \(l\) to obtain, after some algebra, that \(c\) is given by (51). With \(c\) known, \(\xi _0\) and \(\xi _1\) are obtained as in (52). We remark that, with \(c\) as given in (51), the centers of the two disks are at \(\mathbf y =(\sqrt{c^2+a_0^2},0)\) and \(\mathbf y =(-\sqrt{c^2+a_1^2},0)\).

Upon transforming (75) to bipolar coordinates, we obtain that \(Q(\xi ,\eta )\equiv q_c\left[ y_1(\xi ,\eta ),y_2(\xi ,\eta )\right] \) satisfies

$$\begin{aligned} Q_{\xi \xi } + Q_{\eta \eta }&= 0 , \quad -\xi _1\le \xi \le \xi _0 , \quad |\eta |\le \pi , \nonumber \\&\quad Q=0 \quad \hbox {on}\quad \xi =-\xi _1,\,\,\,\xi =\xi _0\,; \quad Q, Q_\eta \quad 2\pi \,\,\hbox {periodic in } \eta , \nonumber \\&\quad Q \sim -\frac{1}{2}\log \left( \xi ^2+\eta ^2\right) + {\mathcal O}(1) , \quad \hbox {as} \quad \xi ^2+\eta ^2 \rightarrow 0 . \end{aligned}$$
(81)

To solve (81), we first observe that a special solution to \(Q_{\xi \xi }+Q_{\eta \eta }=0\) with the singularity behavior in (81) is

$$\begin{aligned} Q_{f}(\xi ,\eta )\equiv -\frac{1}{2}\log \left( \cosh \xi -\cos \eta \right) = -\frac{|\xi |}{2} + \frac{\log {2}}{2} + \sum _{m=1}^{\infty } \frac{e^{-m|\xi |}}{m} \cos (m\eta ) . \quad \end{aligned}$$
(82)

We then decompose \(Q=Q_f+ Q_{p}\), so that \(Q_p\) satisfies \(\varDelta _\mathbf{y } Q_p=0\), is \(2\pi \) periodic in \(\eta \), and satisfies the boundary conditions

$$\begin{aligned} Q_{p}(\xi _0,\eta )&= \frac{\xi _0}{2} -\frac{\log {2}}{2} - \sum _{m=1}^{\infty } \frac{e^{-m\xi _0}}{m}\cos (m\eta ) , \nonumber \\ Q_{p}(-\xi _1,\eta )&= \frac{\xi _1}{2} -\frac{\log {2}}{2} - \sum _{m=1}^{\infty } \frac{e^{-m\xi _1}}{m}\cos (m\eta ) . \end{aligned}$$
(83)

To determine \(Q_p\), we first represent \(Q_p\) as a Fourier cosine series in \(\cos (m\eta )\) and then use the boundary conditions (83) to identify the coefficients in the Fourier series. In this way, we obtain that

$$\begin{aligned} Q_p(\xi ,\eta ) =C_0 + D_0 \xi + \sum _{m=1}^{\infty } \left[ C_m \cosh (m\xi ) + D_m \sinh (m\xi )\right] \cos (m\eta ) , \end{aligned}$$
(84a)

where

$$\begin{aligned} C_0&= -\frac{\log {2}}{2} + \frac{\xi _0\xi _1}{\xi _0+\xi _1}\nonumber \\ C_m&= -\frac{ \left[ e^{-m\xi _0}\sinh (m\xi _1)+e^{-m\xi _1}\sinh (m\xi _0)\right] }{m \sinh \left[ m(\xi _0+\xi _1)\right] } , \quad \hbox {for} \quad m\ge 1, \end{aligned}$$
(84b)

with similar formulae for the coefficients \(D_m\) for \(m\ge 0\).

Finally, to identify the logarithmic capacitance \(d_{1c}\) of the cluster, we expand \(Q=Q_f+Q_p\) as \((\xi ,\eta )\rightarrow 0\) to obtain

$$\begin{aligned} Q \sim -\frac{1}{2}\log \left( \frac{\xi ^2+\eta ^2}{2}\right) + Q_{p}(0,0) . \end{aligned}$$
(85)

Since \(\xi ^2+\eta ^2\sim {4c^2/|\mathbf y |^2}\) from (77), we obtain from (85) that

$$\begin{aligned} q_c \sim \log |\mathbf y | - \log \left( 2\sqrt{c}\right) + Q_p(0,0) , \quad \hbox {as} \quad |\mathbf y |\rightarrow \infty . \end{aligned}$$
(86)

From this relation, together with \(Q_{p}(0,0)=\sum _{m=0}^{\infty } C_m\) from (83), we identify \(d_{1c}\) in (76) as

$$\begin{aligned} \log {d_{1c}} = \log \left( 2 c\right) - \frac{\xi _0\xi _1}{\xi _0+\xi _1} - \sum _{m=1}^{\infty } C_m, \end{aligned}$$
(87)

where \(C_m\) for \(m\ge 1\) is given in (84b). This completes the derivation of (50).

Next, we derive (53) for \(q^{\star }_{\infty }\) by first transforming (48) to bipolar coordinates. In this way, we obtain that \(Q^{\star }(\xi ,\eta )\equiv q^{\star }\left[ y_1(\xi ,\eta ),y_2(\xi ,\eta )\right] \) is the smooth function that satisfies

$$\begin{aligned} Q^{\star }_{\xi \xi } + Q^{\star }_{\eta \eta }&= 0 , \quad -\xi _1\le \xi \le \xi _0 , \quad |\eta |\le \pi , \nonumber \\ Q^{\star }=0 \quad \hbox {on}\quad \xi&= -\xi _1\,; \quad Q^{\star }=1 \quad \hbox {on}\quad \xi =\xi _0\,; \quad Q^{\star }, Q^{\star }_\eta \quad 2\pi \,\, \hbox {periodic in } \eta .\nonumber \\ \end{aligned}$$
(88)

The solution to this problem is simply \(Q^{\star }={(\xi +\xi _1)/(\xi _0+\xi _1)}\). Since \(r\rightarrow \infty \) as \((\xi ,\eta )\rightarrow 0\), we readily identify the far-field behavior in (48) as \(q^{\star }_{\infty }=Q^{\star }(0,0)={\xi _1/(\xi _0+\xi _1)}\), which confirms (53).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurella, V., Tzou, J.C., Coombs, D. et al. Asymptotic Analysis of First Passage Time Problems Inspired by Ecology. Bull Math Biol 77, 83–125 (2015). https://doi.org/10.1007/s11538-014-0053-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-014-0053-5

Keywords

Mathematics Subject Classification

Navigation