Skip to main content

Advertisement

Log in

Noninvasive Fuhrman grading of clear cell renal cell carcinoma using computed tomography radiomic features and machine learning

  • COMPUTED TOMOGRAPHY
  • Published:
La radiologia medica Aims and scope Submit manuscript

Abstract

Purpose

To identify optimal classification methods for computed tomography (CT) radiomics-based preoperative prediction of clear cell renal cell carcinoma (ccRCC) grade.

Materials and methods

Seventy-one ccRCC patients (31 low grade and 40 high grade) were included in this study. Tumors were manually segmented on CT images followed by the application of three image preprocessing techniques (Laplacian of Gaussian, wavelet filter, and discretization of the intensity values) on delineated tumor volumes. Overall, 2530 radiomics features (tumor shape and size, intensity statistics, and texture) were extracted from each segmented tumor volume. Univariate analysis was performed to assess the association between each feature and the histological condition. Multivariate analysis involved the use of machine learning (ML) algorithms and the following three feature selection algorithms: the least absolute shrinkage and selection operator, Student’s t test, and minimum Redundancy Maximum Relevance. These selected features were then used to construct three classification models (SVM, random forest, and logistic regression) to discriminate high from low-grade ccRCC at nephrectomy. Lastly, multivariate model performance was evaluated on the bootstrapped validation cohort using the area under the receiver operating characteristic curve (AUC) metric.

Results

The univariate analysis demonstrated that among the different image sets, 128 bin-discretized images have statistically significant different texture parameters with a mean AUC of 0.74 ± 3 (q value < 0.05). The three ML-based classifiers showed proficient discrimination between high and low-grade ccRCC. The AUC was 0.78 for logistic regression, 0.62 for random forest, and 0.83 for the SVM model, respectively.

Conclusion

CT radiomic features can be considered as a useful and promising noninvasive methodology for preoperative evaluation of ccRCC Fuhrman grades.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. https://www.r-project.org.

References

  1. Capitanio U, Montorsi F (2016) Renal cancer. Lancet 387(10021):894–906

    PubMed  Google Scholar 

  2. Srigley JR, Delahunt B, Eble JN, Egevad L, Epstein JI, Grignon D, Hes O, Moch H, Montironi R, Tickoo SK (2013) The International Society of Urological Pathology (ISUP) Vancouver classification of renal neoplasia. Am J Surg Pathol 37(10):1469–1489

    PubMed  Google Scholar 

  3. Marconi L, Dabestani S, Lam TB, Hofmann F, Stewart F, Norrie J, Bex A, Bensalah K, Canfield SE, Hora M (2016) Systematic review and meta-analysis of diagnostic accuracy of percutaneous renal tumour biopsy. Eur Urol Oncol 69(4):660–673

    Google Scholar 

  4. Muglia VF, Prando A (2015) Renal cell carcinoma: histological classification and correlation with imaging findings. Radiol Bras 48(3):166–174

    PubMed  PubMed Central  Google Scholar 

  5. Delahunt B, Cheville JC, Martignoni G, Humphrey PA, Magi-Galluzzi C, McKenney J, Egevad L, Algaba F, Moch H, Grignon DJ (2013) The International Society of Urological Pathology (ISUP) grading system for renal cell carcinoma and other prognostic parameters. Am J Surg Pathol 37(10):1490–1504

    PubMed  Google Scholar 

  6. Lohse CM, Blute ML, Zincke H, Weaver AL, Cheville JC (2002) Comparison of standardized and nonstandardized nuclear grade of renal cell carcinoma to predict outcome among 2,042 patients. Am J Clin Pathol 118(6):877–886

    PubMed  Google Scholar 

  7. Delahunt B (2009) Advances and controversies in grading and staging of renal cell carcinoma. Mod Pathol 22(S2):S24

    PubMed  Google Scholar 

  8. Tomaszewski JJ, Uzzo RG, Smaldone MC (2014) Heterogeneity and renal mass biopsy: a review of its role and reliability. Cancer Biol Med 11(3):162

    PubMed  PubMed Central  Google Scholar 

  9. Blumenfeld AJ, Guru K, Fuchs GJ, Kim HL (2010) Percutaneous biopsy of renal cell carcinoma underestimates nuclear grade. Urology 76(3):610–613

    PubMed  Google Scholar 

  10. Kutikov A, Kunkle DA, Uzzo RG (2009) Focal therapy for kidney cancer: a systematic review. Curr Opin Urol 19(2):148–153

    PubMed  PubMed Central  Google Scholar 

  11. Ljungberg B, Albiges L, Abu-Ghanem Y, Bensalah K, Dabestani S, Fernández-Pello S, Giles RH, Hofmann F, Hora M, Kuczyk MA (2019) European association of urology guidelines on renal cell carcinoma: the 2019 update. Eur Urol 75(5):799–810

    PubMed  Google Scholar 

  12. Volpe A, Panzarella T, Rendon RA, Haider MA, Kondylis FI, Jewett MA (2004) The natural history of incidentally detected small renal masses. Cancer 100(4):738–745

    PubMed  Google Scholar 

  13. Bratslavsky G, Kirkali Z (2010) The changing face of renal-cell carcinoma. J Endourol 24(5):753–757

    PubMed  PubMed Central  Google Scholar 

  14. Kunkle DA, Egleston BL, Uzzo RG (2008) Excise, ablate or observe: the small renal mass dilemma—a meta-analysis and review. J Urol 179(4):1227–1234

    PubMed  Google Scholar 

  15. Yoshida R, Yoshizako T, Hisatoshi A, Mori H, Tamaki Y, Ishikawa N, Kitagaki H (2017) The additional utility of apparent diffusion coefficient values of clear-cell renal cell carcinoma for predicting metastasis during clinical staging. Acta Radiol Open 6(1):2058460116687174

    PubMed  PubMed Central  Google Scholar 

  16. Ishigami K, Leite LV, Pakalniskis MG, Lee DK, Holanda DG, Kuehn DM (2014) Tumor grade of clear cell renal cell carcinoma assessed by contrast-enhanced computed tomography. SpringerPlus 3(1):694

    PubMed  PubMed Central  Google Scholar 

  17. Ding J, Xing Z, Jiang Z, Chen J, Pan L, Qiu J, Xing W (2018) CT-based radiomic model predicts high grade of clear cell renal cell carcinoma. Eur J Radiol 103:51–56

    PubMed  Google Scholar 

  18. Lambin P, Leijenaar RT, Deist TM, Peerlings J, De Jong EE, Van Timmeren J, Sanduleanu S, Larue RT, Even AJ, Jochems A (2017) Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol 14(12):749

    PubMed  Google Scholar 

  19. Shiri I, Maleki H, Hajianfar G, Abdollahi H, Ashrafinia S, Hatt M, Oveisi M, Rahmim A (2019) Next generation radiogenomics sequencing for prediction of EGFR and KRAS mutation status in NSCLC patients using multimodal imaging and machine learning approaches. arXiv preprint arXiv:190702121

  20. Hajianfar G, Shiri I, Maleki H, Oveisi N, Haghparast A, Abdollahi H, Oveisi M (2019) Noninvasive O6 Methylguanine-DNA Methyltransferase status prediction in glioblastoma multiforme cancer using magnetic resonance imaging radiomics features: univariate and multivariate radiogenomics analysis. World Neurosurg 132:140–161

    Google Scholar 

  21. Abdollahi H, Mahdavi SR, Shiri I, Mofid B, Bakhshandeh M, Rahmani K (2019) Magnetic resonance imaging radiomic feature analysis of radiation-induced femoral head changes in prostate cancer radiotherapy. J Cancer Res Ther 15(8):11

    Google Scholar 

  22. Abdollahi H, Shiri I, Heydari M (2019) Medical imaging technologists in radiomics era: an alice in wonderland problem. Iran J Public Health 48(1):184

    PubMed  PubMed Central  Google Scholar 

  23. Shiri I, Rahmim A, Ghaffarian P, Geramifar P, Abdollahi H, Bitarafan-Rajabi A (2017) The impact of image reconstruction settings on 18F-FDG PET radiomic features: multi-scanner phantom and patient studies. Eur Radiol 27(11):4498–4509

    PubMed  Google Scholar 

  24. Shiri I, Ghafarian P, Geramifar P, Leung KH-Y, Ghelichoghli M, Oveisi M, Rahmim A, Ay MR (2019) Direct attenuation correction of brain PET images using only emission data via a deep convolutional encoder-decoder (Deep-DAC). Eur Radiol 29(12):6867–6879

    PubMed  Google Scholar 

  25. Bektas CT, Kocak B, Yardimci AH, Turkcanoglu MH, Yucetas U, Koca SB, Erdim C, Kilickesmez O (2019) Clear cell renal cell carcinoma: machine learning-based quantitative computed tomography texture analysis for prediction of Fuhrman nuclear grade. Eur Radiol 29(3):1153–1163

    PubMed  Google Scholar 

  26. Feng Z, Shen Q, Li Y, Hu Z (2019) CT texture analysis: a potential tool for predicting the Fuhrman grade of clear-cell renal carcinoma. Cancer Imaging 19(1):6

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Shu J, Wen D, Xi Y, Xia Y, Cai Z, Xu W, Meng X, Liu B, Yin H (2020) Clear cell renal cell carcinoma: machine learning-based computed tomography radiomics analysis for the prediction of WHO/ISUP grade. Eur J Radiol 121:108738 in press

    Google Scholar 

  28. Akin O, Elnajjar P, Heller M, Jarosz R, Erickson B, Kirk S, Filippini J (2016) Radiology data from the cancer genome atlas kidney renal clear cell: carcinoma [TCGA-KIRC] collection. The Cancer Imaging Archive Website: https://wiki.cancerimagingarchive.net/display/Public/TCGA-KIRC

  29. Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, Fillion-Robin JC, Pujol S, Bauer C, Jennings D, Fennessy F, Sonka M, Buatti J, Aylward S, Miller JV, Pieper S, Kikinis R (2012) 3D slicer as an image computing platform for the quantitative imaging network. Magn Reson Imaging 30(9):1323–1341

    PubMed  PubMed Central  Google Scholar 

  30. Shafiq-ul-Hassan M, Zhang GG, Latifi K, Ullah G, Hunt DC, Balagurunathan Y, Abdalah MA, Schabath MB, Goldgof DG, Mackin D (2017) Intrinsic dependencies of CT radiomic features on voxel size and number of gray levels. Med Phys 44(3):1050–1062

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Van Griethuysen JJ, Fedorov A, Parmar C, Hosny A, Aucoin N, Narayan V, Beets-Tan RG, Fillion-Robin J-C, Pieper S, Aerts HJ (2017) Computational radiomics system to decode the radiographic phenotype. Cancer Res 77(21):e104–e107

    PubMed  PubMed Central  Google Scholar 

  32. Haynes W (2013) Benjamini–hochberg method. Encyclopedia of systems biology, pp 78–78

  33. Kickingereder P, Götz M, Muschelli J, Wick A, Neuberger U, Shinohara RT, Sill M, Nowosielski M, Schlemmer H-P, Radbruch A (2016) Large-scale radiomic profiling of recurrent glioblastoma identifies an imaging predictor for stratifying anti-angiogenic treatment response. Clin Cancer Res 22(23):5765–5771

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Guo P, Zeng F, Hu X, Zhang D, Zhu S, Deng Y, Hao Y (2015) Improved variable selection algorithm using a LASSO-type penalty, with an application to assessing hepatitis B infection relevant factors in community residents. PLoS ONE 10(7):e0134151

    PubMed  PubMed Central  Google Scholar 

  35. Tian K, Rubadue CA, Lin DI, Veta M, Pyle ME, Irshad H, Heng YJ (2019) Automated clear cell renal carcinoma grade classification with prognostic significance. PLoS ONE 14(10):e0222641

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Ficarra V, Righetti R, Martignoni G, D’Amico A, Pilloni S, Rubilotta E, Malossini G, Mobilio G (2001) Prognostic value of renal cell carcinoma nuclear grading: multivariate analysis of 333 cases. Urol Int 67(2):130–134

    CAS  PubMed  Google Scholar 

  37. Vetterlein MW, Jindal T, Becker A, Regier M, Kluth LA, Tilki D, Chun FK-H (2016) Small renal masses in the elderly: contemporary treatment approaches and comparative oncological outcomes of nonsurgical and surgical strategies. Investig Clin Urol 57(4):231–239

    PubMed  PubMed Central  Google Scholar 

  38. Jewett MA, Mattar K, Basiuk J, Morash CG, Pautler SE, Siemens DR, Tanguay S, Rendon RA, Gleave ME, Drachenberg DE (2011) Active surveillance of small renal masses: progression patterns of early stage kidney cancer. Eur Urol 60(1):39–44

    PubMed  Google Scholar 

  39. Rosenkrantz AB, Niver BE, Fitzgerald EF, Babb JS, Chandarana H, Melamed J (2010) Utility of the apparent diffusion coefficient for distinguishing clear cell renal cell carcinoma of low and high nuclear grade. AJR Am J Roentgenol 195(5):W344–W351

    PubMed  Google Scholar 

  40. Maruyama M, Yoshizako T, Uchida K, Araki H, Tamaki Y, Ishikawa N, Shiina H, Kitagaki H (2015) Comparison of utility of tumor size and apparent diffusion coefficient for differentiation of low-and high-grade clear-cell renal cell carcinoma. Acta Radiol 56(2):250–256

    PubMed  Google Scholar 

  41. Zhang J, Mazaheri Tehrani Y, Wang L, Ishill NM, Schwartz LH, Hricak H (2008) Renal masses: characterization with diffusion-weighted MR imaging: a preliminary experience. Radiology 247(2):458–464

    PubMed  Google Scholar 

  42. Goyal A, Sharma R, Bhalla AS, Gamanagatti S, Seth A, Iyer VK, Das P (2012) Diffusion-weighted MRI in renal cell carcinoma: a surrogate marker for predicting nuclear grade and histological subtype. Acta Radiol 53(3):349–358

    PubMed  Google Scholar 

  43. Shu J, Tang Y, Cui J, Yang R, Meng X, Cai Z, Zhang J, Xu W, Wen D, Yin H (2018) Clear cell renal cell carcinoma: CT-based radiomics features for the prediction of Fuhrman grade. Eur J Radiol 109:8–12

    PubMed  Google Scholar 

  44. Breiman L (2001) Random forests. Mach Learn 45:5–32

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Shahid Beheshti University of Medical Sciences under Grant Number 388 and the Swiss National Science Foundation under Grant SNRF 320030_176052.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Isaac Shiri or Mohammad Reza Deevband.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare.

Ethical standards

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent is not needed for this study.

Research involving human participants and/or animals

All human subject studies were downloaded from The Cancer Imaging Archive (TCIA), an open-access database of medical images for cancer research. The site is funded by the National Cancer Institute’s Cancer Imaging Program, and the contract operated by the University of Arkansas for Medical Sciences.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nazari, M., Shiri, I., Hajianfar, G. et al. Noninvasive Fuhrman grading of clear cell renal cell carcinoma using computed tomography radiomic features and machine learning. Radiol med 125, 754–762 (2020). https://doi.org/10.1007/s11547-020-01169-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11547-020-01169-z

Keywords

Navigation