Skip to main content
Log in

DLR MiroSurge: a versatile system for research in endoscopic telesurgery

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

Research on surgical robotics demands systems for evaluating scientific approaches. Such systems can be divided into dedicated and versatile systems. Dedicated systems are designed for a single surgical task or technique, whereas versatile systems are designed to be expandable and useful in multiple surgical applications. Versatile systems are often based on industrial robots, though, and because of this, are hardly suitable for close contact with humans.

Method

To achieve a high degree of versatility the Miro robotic surgery platform (MRSP) consists of versatile components, dedicated front–ends towards surgery and configurable interfaces for the surgeon.

Results

This paper presents MiroSurge, a configuration of the MRSP that allows for bimanual endoscopic telesurgery with force feedback.

Conclusions

While the components of the MiroSurge system are shown to fulfil the rigid design requirements for robotic telesurgery with force feedback, the system remains versatile, which is supposed to be a key issue for the further development and optimisation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hagn U, Nickl M, Jörg S, Tobergte A, Kübler B, Passig G, Gröger M, Fröhlich F, Seibold U, Konietschke R, Le-Tien L, Albu-Schäffer A, Grebenstein M, Ortmaier T, Hirzinger G (2008) DLR MIROSURGE—towards versatility in surgical robotics. In: Proceedings of CURAC 2008, Leipzig, pp 143–146

  2. Green PS, Hill JW, Jensen JF, Shah A (1995) Telepresence surgery. IEEE Eng Med Biol 14(3): 324–329. doi:10.1109/51.391769

    Article  Google Scholar 

  3. Phee L, Xiao D, Yuen J, Chan CF, Ho H, Thng CH, Cheng C, Ng WS (2005) Ultrasound guided robotic system for transperineal biopsy of the prostate. In: Proceedings of the IEEE international conference on robotics and automation (ICRA) 2005, Barcelona, pp 1315–1320

  4. Smith-Guerin N, Nouaille L, Vievres P, Poisson G (2008) A medical robot kinematics design approach based on knowledge management. Ind Robot 35(4): 316–323. doi:10.1108/01439910810876418

    Article  Google Scholar 

  5. Albers J, Schmidt T, Hassfeld S, Heid F, Vahl C (2007) Sternotomy and craniotomy by an autonomous robot: experimental evaluation on seven pigs. Zeitschrift für Herz-, Thorax- und Gefäßchirurgie. doi:10.1007/s00398-007-0599-8

  6. Ortmaier T, Weiß H, Hagn U, Nickl M, Albu-Schäffer A, Ott C, Jörg S, Konietschke R, Le-Tien L, Hirzinger G (2006) A hands-on-robot for accurate placement of pedicle screws. In: Proceedings of the IEEE international conference on robotics and automation (ICRA) 2006, Orlando, pp 4179–4186

  7. Döbele S (2008) Die transpedikuläre Bohrung: eine biomechanische und theoretische Analyse der transpedikulären Bohrung zur Auslegung eines navigationsgestützten, semi-aktiven Roboters. PhD thesis, Technische Universität München, Munich, Germany

  8. Konietschke R, Ortmaier T, Ott C, Hagn U, Le-Tien L, Hirzinger G (2006) Concepts of human-robot co-operation for a new medical robot. In: Proceedings of the second international workshop on human centered robotic systems (HCRS) 2006, Munich, pp 1-6

  9. Hagn U, Nickl M, Jörg S, Passig G, Bahls T, Nothhelfer A, Hacker F, Le-Tien L, Albu-Schäffer A, Konietschke R, Grebenstein M, Warpup R, Haslinger R, Frommberger M, Hirzinger G (2008) The DLR MIRO—a versatile lightweight robot for surgical applications. Ind Robot 35(4). doi:10.1108/01439910810876427

  10. Konietschke R, Ortmaier T, Weiss H, Hirzinger G (2004) Manipulability and accuracy measures for a medical robot in minimally invasive surgery. In: Lenarcic J, Galletti C (eds) On advances in robot kinematics. Kluwer, New York, pp 191–198

    Google Scholar 

  11. Frumento S, Michelini R, Konietschke R, Hagn U, Ortmaier T, Hirzinger G (2006) A co-robotic positioning device for carrying surgical end-effectors. In: Proceedings of ASME-ESDA 2006, Torino, pp 1–8

  12. Haddadin S, Albu-Schäffer A, Hirzinger G (2007) Safety evaluation of physical human-robot interaction via crash-testing. In: Proceedings of RSS2007, Atlanta, pp 217 – 224

  13. Albu-Schäffer A, Ott C, Hirzinger G (2007) A unified passivity based control framework for position, torque and impedance control of flexible joint robots. Int J Robot Res 26(1): 23–39. doi:10.1177/0278364907073776

    Article  Google Scholar 

  14. Kuebler B, Seibold U, Hirzinger G (2005) Development of actuated and sensor integrated forceps for minimally invasive robotic surgery. Int J Med Robot Comput Surg. doi:10.1581/mrcas.2005.010305 and doi:10.1002/rcs.33

  15. Seibold U, Kuebler B, Hirzinger G (2008) Prototypic force feedback instrument for minimally invasive robotic surgery. In: Bozovic V (eds) Medical robotics. I-Tech Education and Publishing, Vienna, pp 377–400

    Google Scholar 

  16. Wagner C, Stylopoulos N, Howe R (2002) The role of force feedback in surgery: analysis of blunt dissection. In: Proceedings of the 10th symposium on haptic interfaces for virtual environment and teleoperator systems (HAPTICS), pp 68–74, ISBN:0-7695-1489-8

  17. Kitagawa M, Dokko D, Okamura AM, Bethea BT, Yuh DD (2004) Effect of sensory substitution on suture manipulation forces for surgical teleoperation. J Thorac Cardiovasc Surg 2004: 151–158

    Google Scholar 

  18. Abolhassani N, Patel R, Moallem M (2007) Needle insertion into soft tissue: a survey. Med Eng Phys 29(4). doi:10.1016/j.medengphy.2006.07.003

  19. Frick TB, Marucci DD, Cartmill JA, Martin CJ, Walsh WR (2001) Resistance forces acting on suture needles. J Biomech 34(10): 1335–1340. doi:10.1016/S0021-9290(01)00099-9

    Article  CAS  PubMed  Google Scholar 

  20. Maurin B, Barbe L, Bayle B, Zanne P, Gangloff J, de Mathelin M, Gangi A, Soler L, Forgione A (2004) In-vivo study of forces during needle insertions. In: Buzug TM, Lueth TC (eds) Perspectives in image-guided surgery. World Scientific Pub Co, Singapore, pp 415–422

    Google Scholar 

  21. Okamura AM, Simone C, O’Leary MD (2004) Force modeling for needle insertion into soft tissue. IEEE Trans Biomed Eng 51(10). doi:10.1109/TBME.2004.831542

  22. Podder TK, Sherman J, Clark DP, Messing EM, Rubens DJ, Strang JG, Liao L, Brasacchio RA, Zhang Y, Ng WS, Yu Y (2005) Evaluation of robotic needle insertion in conjunction with in vivo manual insertion in the operating room. In: Proceedings of the IEEE Roman 2005. doi:10.1109/ROMAN.2005.1513758

  23. Wei GQ, Arbter K, Hirzinger G (1997) Real-time visual servoing for laparoscopic surgery. IEEE Eng Med Biol 16(1): 40–45. doi:10.1109/51.566151

    Article  CAS  Google Scholar 

  24. Groeger M, Ortmaier T, Sepp W, Hirzinger G (2002) Tracking local motion on the beating heart. Proc SPIE 4681: 233. doi:10.1117/12.466926

    Article  Google Scholar 

  25. Konietschke R (2007) Planning of Workplaces with Multiple Kinematically Redundant Robots. Ph.D. thesis, Technische Universität München, Germany

  26. Suppa M, Kielhofer S, Langwald J, Hacker F, Strobl KH, Hirzinger G (2007) The 3D-modeller: a multi-purpose vision platform. In: Proceedings of the IEEE international conference on robotics and automation (ICRA) 2007, Rome, doi:10.1109/ROBOT.2007.363081

  27. Barequet G, Sharir M (1997) Partial surface and volume matching in three dimensions. IEEE Trans Pattern Anal Mach Intell(T-PAMI) 19(9): 929–948

    Article  Google Scholar 

  28. Le-Tien L, Albu-Schäffer A, Hirzinger G (2007) MIMO state feedback controller for a flexible joint robot with strong joint coupling. In: Proceedings of the IEEE international conference on robotics and automation (ICRA) 2007, Rome, doi:10.1109/ROBOT.2007.364065

  29. Ott C, Albu-Schäffer A, Hirzinger G (2004) A passivity based Cartesian impedance controller for flexible joint robots–Part I: torque feedback and gravity compensation. In: Proceedings of the IEEE international conference on robotics and automation (ICRA) 2004, New Orleans, pp 2659–2665

  30. Baeuml B, Hirzinger G (2006) Agile robot development (aRD): a pragmatic approach to robotic software. In: Proceedings of the IEEE international conference on intelligent robots and systems (IROS) 2006, Beijing, doi:10.1109/IROS.2006.281756

  31. Groeger M, Sepp W, Hirzinger G (2005) Structure driven substitution of specular reflections for realtime heart surface tracking. In: Proceedings of the IEEE international conference on image processing (ICIP) 2005, Genova, 2, pp 1066–1069

  32. Ortmaier T, Groeger M, Boehm DH, Falk V, Hirzinger G (2005) Motion estimation in beating heart surgery. Ieee Trans Biomed Eng 52(10): 1729–1740

    Article  PubMed  Google Scholar 

  33. Groeger M, Hirzinger G (2006) Image stabilisation of the beating heart by local linear interpolation. Proc SPIE 6141: 61410X. doi:10.1117/12.654119

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Hagn.

Additional information

A short version of this manuscript has been presented at the CURAC.08 conference in Leipzig, Germany [1].

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hagn, U., Konietschke, R., Tobergte, A. et al. DLR MiroSurge: a versatile system for research in endoscopic telesurgery. Int J CARS 5, 183–193 (2010). https://doi.org/10.1007/s11548-009-0372-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-009-0372-4

Keywords

Navigation