Skip to main content

Advertisement

Log in

Surgical process modelling: a review

  • Review Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

Surgery is continuously subject to technological and medical innovations that are transforming daily surgical routines. In order to gain a better understanding and description of surgeries, the field of surgical process modelling (SPM) has recently emerged. The challenge is to support surgery through the quantitative analysis and understanding of operating room activities. Related surgical process models can then be introduced into a new generation of computer-assisted surgery systems.

Methods

In this paper, we present a review of the literature dealing with SPM. This methodological review was obtained from a search using Google Scholar on the specific keywords: “surgical process analysis”, “surgical process model” and “surgical workflow analysis”.

Results

This paper gives an overview of current approaches in the field that study the procedural aspects of surgery. We propose a classification of the domain that helps to summarise and describe the most important components of each paper we have reviewed, i.e., acquisition, modelling, analysis, application and validation/evaluation. These five aspects are presented independently along with an exhaustive list of their possible instantiations taken from the studied publications.

Conclusion

This review allows a greater understanding of the SPM field to be gained and introduces future related prospects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Cleary K, Chung HY, Mun SK (2005) OR 2020: the operating room of the future. Laparoendosc Adv Surg Tech 15(5):495–500

    Article  Google Scholar 

  2. Rattner WD, Park A (2003) Advanced devices for the operating room of the future. Semin Laparosc Surg 10(2):85–88

    PubMed  Google Scholar 

  3. Satava RM, Carrico CJ (1996) Advanced simulation technologies for surgical education. Bull Am College Surg 81(7):71–77

    Google Scholar 

  4. Taylor C, Draney MT, Ku JP, Parker D, Steele BN, Wang K, Zarins CK (1999) Predictive medicine: computational techniques in therapeutic decision making. Comput Aid Surg 4:231–247

    Article  CAS  Google Scholar 

  5. MacKenzie CL, Ibbotson AJ, Cao CGL, Lomax A (2001) Hierarchical decomposition of laparoscopic surgery: a human factors approach to investigating the operating room environment. Minim Invasive Ther Allied Technol 10(3):121–128

    Article  Google Scholar 

  6. Jannin P, Raimbault M, Morandi X, Seigneuret E, Gibaud B (2001) Design of a neurosurgical gestures model for multimodal image guided surgery. Comput Assisted Radiol Surg 1230:102–107

    Google Scholar 

  7. Münchenberg J, Brief J, Raczkowsky J, Wörn H, Hassfeld S, Mühling J (2000) Operation planning of robot supported surgical interventions. Int Conf Intell Robots Syst 1:547–552

    Google Scholar 

  8. Jannin P, Raimbault M, Morandi X, Riffaud L, Gibaud B (2003) Model of surgical procedures for multimodal image-guided neurosurgery. Computer Aided Surg 8(2):98–106

    Article  CAS  Google Scholar 

  9. Jannin P, Morandi X (2007) Surgical models for computer-assisted neurosurgery. Neuroimage 37(3):783–791

    Article  CAS  PubMed  Google Scholar 

  10. Neumuth T, Trantakis C, Eckhardt F, Dengl M, Meixensberger J, Burgert O (2007) Supporting the analysis of inter-vention courses with surgical process models on the example of fourteen microsurgical lumbar discectomies. Int J Comput Assist Radiol Surg 2(1):436–438

    Google Scholar 

  11. Cao CGL, MacKenzie CL, Payandeh S (1996) Task and motion analysis in endoscopic surgery. In: ASME dynamic systems, 5th annual symposium on haptic interface for virtual environment and teleoperation

  12. Ibbotson JA, MacKenzie CL, Cao CG, Lomax AJ (1999) Gaze patterns in laparoscopic surgery. Stud Health Technol Inform 7:154–160

    Google Scholar 

  13. Lo B, Darzi A, Yang G (2003) Episode classification for the analysis of tissue-instrument interaction with multiple visual cues. Med Image Comput Comput Assist Interv 1:231–237

    Google Scholar 

  14. Lin HC, Shafran I, Yuh D, Hager GD (2006) Towards automatic skill evaluation: detection and segmentation of robot-assisted surgical motions. Computer Aided Surg 11(5):220–230

    Article  Google Scholar 

  15. Bhatia B, Oates T, Xiao Y, Hu P (2007) Real-time identification of operating room state from video. AAAI 2:1761–1766

    Google Scholar 

  16. Hu P, Ho D, MacKenzie CF, Hu H, Martz D, Jacobs J, Voit R, Xiao Y (2006) Advanced Visualization platform for surgical operating room coordination. Distributed video board system. Surg Innov 13(2):129–135

    Google Scholar 

  17. Sandberg WS, Daily B, Egan MT, Stahl JE, Goldman JM, Wiklund RA, Rattner D (2005) Deliberate perioperative systems design improves operating room throughput. Anesthesiology 103:406–418

    Article  PubMed  Google Scholar 

  18. Xiao Y, Hu P, Hu H, Ho D, Dexter F, Mackenzie CF, Seagull FJ (2005) An algorithm for processing vital sign monitoring data to remotely identify operating room occupancy in real-time. Anesth Analg 101(3):32–823

    Article  Google Scholar 

  19. Ahmadi A, Sielhorst T, Stauder R, Horn M, Feussner H, Navab N (2006) Recovery of surgical workflow without explicit models. Med Image Comput Comput Assist Interv 9(1):420–428

    PubMed  Google Scholar 

  20. James A, Vieira D, Lo BPL, Darzi A, Yang GZ (2007) Eye-gaze driven surgical workflow segmentation. Med Image Comput Comput Assist Interv 10(2):110–117

    CAS  PubMed  Google Scholar 

  21. Katic D, Sudra G, Speidel S, Castrillon-Oberndorfer G, Eggers G, Dillman R (2010) Knowledge-based situation interpretation for context-aware augmented reality in dental implant surgery. Med Imaging Augment Real 6326:531–540

    Google Scholar 

  22. Klank U, Padoy N, Feussner H, Navab N (2008) Automatic feature generation in endoscopic images. Int J Comput Assisted Radiol Surg 3(3,4):331–339

    Google Scholar 

  23. Lalys F, Riffaud L, Bouget D, Jannin P (2012) A framework for the recognition of high-level surgical tasks from video images for cataract surgeries. IEEE Trans Biomed Eng 59(4):966–976

    Google Scholar 

  24. Nara A, Izumi K, Iseki H, Suzuki T, Nambu K, Sakurai Y (2011) Surgical workflow monitoring based on trajectory data mining. New Frontiers Artif Intell 6797:283–291

    Article  Google Scholar 

  25. Padoy N, Horn M, Feussner H, Berger M, Navab N (2007) Recovery of surgical workflow: a model-based approach. Int J Comput Assist Radiol Surg 2(1):481–482

    Google Scholar 

  26. Padoy N, Blum T, Feuner H, Berger MO, Navab N (2008) On-line recognition of surgical activity for monitoring in the operating room. Conf Inno App Art Intell 3:1718–1724

    Google Scholar 

  27. Padoy N, Blum T, Ahmadi SA, Feussner H, Berger MO, Navab N (2010) Statistical modeling and recognition of surgical workflow. Med Image Anal 16(3):632–641

    Article  PubMed  Google Scholar 

  28. Qi J, Jiang Z, Zhang G, Miao R, Su Q (2006) A surgical management information system driven by workflow. IEEE Conf Serv Oper Logist Inf 1014–1018

  29. Suzuki T, Yoshimitsu K, Tamura M, Muragaki Y, Iseki H (2012) Video information management system for information guided neurosurgery. Computer Aided Surg 3(3):75–82

    Article  Google Scholar 

  30. Thiemjarus S, James A, Yang GZ (2012) An eye-hand data fusion framework for pervasive sensing of surgical activities. Pattern Recognit 45(8):2855–2867

    Article  Google Scholar 

  31. Blum T, Padoy N, Feussner H, Navab N (2008) Workflow mining for visualization and analysis of surgeries. Int J Comput Assisted Radiol Surg 3(5):379–386

    Article  Google Scholar 

  32. Bouarfa L, Jonker PP, Dankelman J (2011) Discovery of high-level tasks in the operating room. J Biomed Inform 44(3): 455–462

    Google Scholar 

  33. Fischer M, Strauss G, Burgert O, Dietz A, Trantakis C, Meixensberger J, Lemke HU (2005) ENT-surgical workflow as an instrument to assess the efficiency of technological developments in medicine. Comput Assisted Radiol Surg 1281:851–855

    Google Scholar 

  34. Ko SY, Kim J, Lee WJ, Kwon DS (2007) Surgery task model for intelligent interaction between surgeon and laparoscopic assistant robot. J Robot Mechatron 8(1):38–46

    Google Scholar 

  35. Lemke HU, Trantakis C, Köchy K, Müller A, Strauss G, Meixensberger J (2004) Workflow analysis for mechatronic and imaging assistance in head surgery. Int Congress Ser 1268:830–835

    Article  Google Scholar 

  36. Malarme P, Wikler D, Warzée N (2011) Intraoperative capture of surgical workflow. Comput Assist Radiol Surg 6:S146–S147

    Google Scholar 

  37. Ahmadi A, Padoy N, Rybachuk K, Feussner H, Heining SM, Navab N (2009) Motif discovery in OR sensor data with application to surgical workflow analysis and activity detection. M2CAI workshop, Med Image Comput Comput Assist Interv

  38. Nomm S, Petlenkov E, Vain J, Belikov J, Miyawaki F, Yoshimitsu K (2008) Recognition of the surgeon’s motions during endoscopic operation by statistics based algorithm and neural networks based ANARX models. Proc Int Fed Automatic Control 17(1)

  39. Burgert O, Neumuth T, Lempp F, Mudunuri R, Meixensberger J, Strauß G, Dietz A, Jannin P, Lemke HU (2006) Linking top-level ontologies and surgical workflows. Int J Comput Assist Radiol Surg 1(1):437–438

    Google Scholar 

  40. Yoshimitsu K, Masamune K, Iseki H, Fukui Y, Hashimoto D, Miyawaki F (2010) Development of scrub nurse robot (SNR) systems for endoscopic and laparoscopic surgery. Micro NanoMechatron Hum Sci 83–88

  41. Speidel S, Sudra G, Senemaud J, Drentschew M, Müller-Stich BP, Gun C, Dillmann R (2008) Recognition of risk situations based on endoscopic instrument tracking and knowledge based situation modeling. Progress Biomed Optics Imaging 9(1):35

    Google Scholar 

  42. Sudra G, Speidel S, Fritz D, Möller-Stich BP, Gutt C, Dillmann R (2007) MEDIASSIST: MEDIcal ASSITance for intraoperative skill transfer in minimally invasive surgery using augmented reality. Progress Biomed Optics Imaging 8(2)

  43. Meng F, D’Avolio LW, Chen AA, Taira RK, Kangarloo H (2005) Generating models of surgical procedures using UMLS concepts and multiple sequence alignment. Am Med Inform Assoc Annu Symp Proc 520–524

  44. Neumuth T, Durstewitz N, Fischer M, Strauss G, Dietz A, Meixensberger J, Jannin P, Cleary K, Lemke HU, Burgert O (2006) Structured recording of intraoperative surgical workflows. SPIE Med Imaging PACS Surg 6145:61450A

  45. Agarwal S, Joshi A, Finin T, Yesha Y, Ganous T (2007) A pervasive computing system for the operating room of the future. Mobile Netw Appl 12(2,3):215–228

    Article  Google Scholar 

  46. Forestier G, Lalys F, Riffaud L, Trelhu B, Jannin P (2012) Classification of surgical processes using dynamic time warping. J Biomed Inform 45:255–264

    Google Scholar 

  47. Neumuth T, Schumann S, Strauss G, Jannin P, Meixensberger J, Dietz A, Lemke HU, Burgert O (2006) Visualization options for surgical workflows. Int J Comput Assisted Radiol Surg 1(1):438–440

    Google Scholar 

  48. Neumuth T, Jannin P, Strauss G, Meixensberger J, Burgert O (2008) Validation of knowledge acquisition for surgical process models. J Am Med Inform Assoc 16(1):72–82

    Article  PubMed  Google Scholar 

  49. Neumuth T, Loebe F, Jannin P (2012) Similarity metrics for surgical process models. Artif Intell Med 54(1):15–27

    Article  PubMed  Google Scholar 

  50. Neumuth T, Liebmann P, Wiedemann P, Meixensberger J (2012) Surgical workflow management schemata for cataract procedures. Process Model-based design and validation of workflow schemata. Methods Inf Med 51(4)

  51. Riffaud L (2010) Recording of surgical processes: a study comparing senior and junior neurosurgeons during lumbar disc herniation surgery. Neurosurgery. 67(2):325–332

    PubMed  Google Scholar 

  52. Kragic D, Hager G (2003) Task modelling and specification for modular sensory based human-machine cooperative systems. Int Conf Intell Robots Syst 3:3192–3197

    Google Scholar 

  53. Haro BB, Zapella L, Vidal R (2012) Surgical gesture classification from video data. Med Image Comput Comput Assist Interv 7510:34–41

    Google Scholar 

  54. Lalys F, Bouget D, Riffaud L, Jannin P (2012) Automatic knowledge-based recognition of low-level tasks in opthalmological procedures. Int J Comput Assist Radiol Surg 8(1):39–49

    Google Scholar 

  55. Miyawaki F, Masamune K, Suzuki S, Yoshimitsu K, Vain J (2005) Scrub nurse and timed-automata-based model for surgery. IEEE Ind Electron Trans 5(52):1227–1235

    Article  Google Scholar 

  56. Neumuth T, Meissner C (2012) Online recognition of surgical instruments by information fusion. Int J Comput Assisted Radiol Surg 7(2):297–304

    Google Scholar 

  57. Weinger MB, Herndon OW, Zornow MH, Paulus MP, Gaba DM, Dallen LT (1994) An objective methodology for task analysis and workload assessment in anesthesia providers. Anesthesiology 80(1):77–92

    Article  CAS  PubMed  Google Scholar 

  58. Reiley CE, Lin HC, Yuh DD, Hager GD (2011) Review of methods for objective surgical skill evaluation. Surg Endosc 25(2):356–366

    Article  PubMed  Google Scholar 

  59. Rosen J, Hannaford B, Sinanan M, Solazzo M (2001) Objective evaluation of laparoscopic surgical skills using hidden Markov models based on haptic information and tool/tissue interactions. Stud Health Technol Inform 81:417–423

    CAS  PubMed  Google Scholar 

  60. Yule S, Flin R, Paterson-Brown S, Maran N (2006) Non-technical skills for surgeons in the operating room: a review of the literature. Surgery 193(2):140–149

    Article  Google Scholar 

  61. Patel VL, Arocha JF et al (2001) A primer on aspects of cognition for medical informatics. J Am Med Inform Assoc 8(4):324–343

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Dexter F, Epstein RH, Traub RD, Xiao Y (2004) Making management decisions on the day of surgery based on operating room efficiency and patient waiting times. Anesthesiology 101(6):1444–1453

    Article  PubMed  Google Scholar 

  63. Dexter F, Epstein RH, Lee JD, Ledolter J (2009) Automatic updating of times remaining in surgical cases using Bayesian analysis of historical case duration data and instant messaging updates from anesthesia providers. Anesth Analg 108:929–940

    Article  PubMed  Google Scholar 

  64. Coles EC, Slavin G (1976) An evaluation of automatic coding of surgical pathology reports. J Clin Pathol 29(7):621–626

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Jannin P, Grova C, Maurer CR (2006) Model for defining and reporting reference-based validation protocols in medical image processing. Int J Comput Assist Interv 1(2):1001–1115

    Google Scholar 

  66. Den Boer KT, de Wit LT, Davids PHP, Dankelman J, Gouma DJ (2001) Analysis of the quality and efficiency of learning laparoscopic skills. Surg Endosc 15:497–503

    Article  Google Scholar 

  67. Sjoerdsma W, Meijer D, Jansen A, den Boer KT, Grimbergen CA (2000) Comparison of efficiencies of three techniques for colon surgery. J Laparoendosc Adv Surg Tech 10(1):47–53

    Article  CAS  Google Scholar 

  68. Darzi A, Mackay S (2002) Skills assessment of surgeons. Surgery 131(2):121–124

    Article  PubMed  Google Scholar 

  69. Bann MS (2003) Measurement of surgical dexterity using motion analysis of simple bench skills. World J Surg 27:390–394

    Article  PubMed  Google Scholar 

  70. Dosis A, Bello F, Moorthy K, Munz Y, Gillies D, Darzi A (2004) Real-time synchronization of kinematic and video data for the comprehensive assessment of surgical skills. Stud Health Technol Inform 98:82–88

    PubMed  Google Scholar 

  71. Mehta NY, Haluck RS, Frecker MI, Snyder AJ (2002) Sequence and task analysis of instrument use in common laparoscopic procedures. Surg Endosc 16(2):280–285

    Article  CAS  PubMed  Google Scholar 

  72. Malik R, White P, Macewen C (2003) Using human reliability analysis to detect surgical error in endoscopic DCR surgery. Clin Otolaryngol Allied Sci 28:456–460

    Article  CAS  PubMed  Google Scholar 

  73. Claus GP, Sjoerdsma W, Jansen A, Grimbergen CA (1995) Quantitative standardised analysis of advanced laparoscopic surgical procedures. Endosc Surg Allied Technol 3:210–213

    CAS  PubMed  Google Scholar 

  74. Payandeh S, Lomax AJ, Dill J, Mackenzie CL, Cao CGL (2002) On defining metrics for assessing laparoscopic surgical skills in a virtual training environment. Stud Health Technol Inform 85:334–340

    PubMed  Google Scholar 

  75. Hager G, Vagvolgyi B, Yuh D (2007) Stereoscopic video overlay with deformable registration. Medicine Meets Virtual Reality

  76. Rosen J, Solazzo M, Hannaford B, Sinanan M (2002) Task decomposition of laparoscopic surgery for objective evaluation of surgical residents’ learning curve using hidden markov model. Comput Aided Surg 7(1):49–61

    Article  PubMed  Google Scholar 

  77. Rosen J, Brown JD, Chang L, Sinanan M, Hannaford B (2006) Generalized approach for modeling minimally invasive surgery as a stochastic process using a discrete Markov model. IEEE Trans Biomed Eng 53(1):399–413

    Article  PubMed  Google Scholar 

  78. Voros S, Hager GD (2008) Towards “real-time” tool-tissue interaction detection in robotically assisted laparoscopy. Int Conf IEEE Biomed Robot Biomechat. 562–567

  79. Radrich H (2008) Vision-based motion monitoring trough data fusion from a chirurgical multi-camera recording system. Diploma thesis, TUM, Munich

  80. Radrich H, Padoy N, Ahmadi A, Feussner H, Hager G, Burschka D, Knoll A (2009) Synchronized multimodal recording system for laparoscopic minimally invasive surgeries. M2CAI workshop, Med Image Comput Comput Interv

  81. Sielhorst T, Blum T, Navab N (2005) Synchronizing 3d movements for quantitative comparison and simultaneous visualization of actions. Int Symp Mix Augm Real 38–47

  82. Speidel S, Benzko J, Krappe S, Sudra G, Azad P, Müller-Stich BP, Gutt C, Dillmann R (2009) Automatic classification of minimally invasive instruments based on endoscopic image sequences. Progress Biomed Optics Imaging 10(1):37

    Google Scholar 

  83. Winter A, Brigl B, Wendt T (2003) Modeling hospital information systems (Part 1): the revised three-layer graph-based meta model 3LGM2. Method Inf Med 42(5):544–551

    CAS  Google Scholar 

  84. Wendt T, Häber A, Brigl B, Winter A (2003) Modeling hospital information systems (Part 2): using the 3LMG2 tool for modelling patient, record management. Methods Inf Med 43(3):256–267

    Google Scholar 

  85. Rosenbloom ST, Miller RA, Johnson KB, Elkin PL, Brown SH (2006) Facilitating direct entry of clinical data into electronic health record systems. J Am Med Inform Assoc 13(3):277–288

    Google Scholar 

  86. Maruster L, van der Aalst W, Weijters T, van den Bosch A, Daelemans W (2001) Automatic discovery of workflows models from hospital data. BNAIC 183–190

  87. Sanchez D, Tentori M, Favela J (2008) Activity recognition for the smart hospital. IEEE Intell Syst 23(2):50–77

    Google Scholar 

  88. Favela J, Tentori M, Castro LA, Moran EB, Martinez-Garcia AI (2007) Activity recognition for context-aware hospital applications: issues and opportunities for the deployment of pervasive networks. Mobile Netw Appl 12(2,3):155–171

    Article  Google Scholar 

  89. Riley R, Manias E (2005) Governing time in operating rooms. J Clin Nurs 15(5):53–546

    Google Scholar 

  90. Archer T, Macario A (2006) The drive for operating room efficiency will increase quality of patient care. Curr Opin Anaesthesiol 19:171–176

    Article  PubMed  Google Scholar 

  91. Houliston BR, Parry DT, Merry AF (2011) TADAA: towards automated detection of anaesthetic activity. Methods Inform Med 50(5):464–471

    Article  CAS  Google Scholar 

  92. Seim AR, Meyer M, Sandberg WS (2005) Does parallel workflow impact anaesthesia quality. In: Am Med Inform Assoc Annu Symp Proc, 1053

  93. Schleppers A, Bender H (2003) Optimised workflow and organisation—from the point of view of an anaesthesiolo-g department. Minim Invasive Ther Allied Technol 12(6):278–283

    Article  PubMed  Google Scholar 

  94. Decker K, Bauer M (2003) Ergonomics in the operating room. Minim Invasive Ther Allied Technol. 12(6):268–277

    Article  PubMed  Google Scholar 

  95. Gehbard F, Brinkmann A (2006) Management of an operating room in a university hospital. Zentralbl Chir. 131(4):341–346

    Article  Google Scholar 

  96. Epstein RH, Dexter F (2012) Mediated interruptions of anaesthesia providers using predictions of workload from anaesthesia information management system data. Anaesth Intensive Care 40:803–812

    CAS  PubMed  Google Scholar 

  97. Tiwari V, Dexter F, Rothman BS, Ehrenfeld JM, Epstein RH (2013) Explanation for the near-contant mean time remaining in surgical cases exceeding their estimated duration, necessary for appropriate display on electronic white boards. Anesth Analg 117(2):487–493

    Article  PubMed  Google Scholar 

  98. Edwards FH, Peterson RF, Bridges C, Ceithaml EL (1995) 1988: Use of a Bayesian statistical model for risk assessment in coronary artery surgery. Updated in 1995. Ann Thorac Surg 59(6):1611–1612

    Article  CAS  PubMed  Google Scholar 

  99. Biagioli B, Scolletta S, Cevenini G, Barbini E, Giomarelli P, Barbini P (2006) A multivariate Bayesian model for assessing morbidity after coronary artery surgery. Crit Care 10(3):R94

    Article  PubMed Central  PubMed  Google Scholar 

  100. Verduijn M, Rosseel PM, Peek N, de Jonge E, de Mol BA (2007) Prognostic Bayesian networks II: an application in the domain of cardiac surgery. J Biomed Inform 40(6):619–649

    Article  PubMed  Google Scholar 

  101. Kuhan G, Marshall EC, Abidia AF, Chetter IC, McCollum PT (2002) A Bayesian hierarchical approach to comparative audit for carotid surgery. Eur J Vasc Endovasc Surg 24(6):505–515

    Article  CAS  PubMed  Google Scholar 

  102. Flin R, Youngson G, Yule S (2007) How do surgeons make intraoperative decisions. Qual Saf Health Care 16:235–239

    Article  PubMed Central  PubMed  Google Scholar 

  103. Jalote-Parmar A, van Alfen M, Hermans JJ (2008) Workflow driven user interface for radiological system: A human factors approach. Comput Assisted Radiol Surg

  104. Morineau T, Morandi X, Le Moëllic N, Diabira S, Haegelen C, Hénaux PL, Jannin P (2009) Decision making during preoperative surgical planning. Hum factors 51(1):66–77

    Article  Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florent Lalys.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lalys, F., Jannin, P. Surgical process modelling: a review. Int J CARS 9, 495–511 (2014). https://doi.org/10.1007/s11548-013-0940-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-013-0940-5

Keywords

Navigation