Skip to main content

Advertisement

Log in

Deep monocular 3D reconstruction for assisted navigation in bronchoscopy

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

In bronchoschopy, computer vision systems for navigation assistance are an attractive low-cost solution to guide the endoscopist to target peripheral lesions for biopsy and histological analysis. We propose a decoupled deep learning architecture that projects input frames onto the domain of CT renderings, thus allowing offline training from patient-specific CT data.

Methods

A fully convolutional network architecture is implemented on GPU and tested on a phantom dataset involving 32 video sequences and \(\sim \)60k frames with aligned ground truth and renderings, which is made available as the first public dataset for bronchoscopy navigation.

Results

An average estimated depth accuracy of 1.5 mm was obtained, outperforming conventional direct depth estimation from input frames by 60%, and with a computational time of \(\le \)30 ms on modern GPUs. Qualitatively, the estimated depth and renderings closely resemble the ground truth.

Conclusions

The proposed method shows a novel architecture to perform real-time monocular depth estimation without losing patient specificity in bronchoscopy. Future work will include integration within SLAM systems and collection of in vivo datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. http://www.marcovs.com/bronchoscopy-navigation/.

  2. While in our experiments the material \(\textit{violet-rubber}\) was uniformly used, any other physically meaningful BRDF can be used for the purpose.

References

  1. Asano F, Eberhardt R, Herth FJF (2014) Virtual bronchoscopic navigation for peripheral pulmonary lesions. Respiration 88(5):430–440

    Article  PubMed  Google Scholar 

  2. Dosovitskiy A, Fischery P, Ilg E, Husser P, Hazirbas C, Golkov V, vd Smagt P, Cremers D, Brox T (2015) Flownet: learning optical flow with convolutional networks. In: IEEE International conference on computer vision (ICCV), pp 2758–2766

  3. Eberhardt R, Kahn N, Gompelmann D, Schumann M, Heussel CP, Herth FJ (2010) Lungpoint—a new approach to peripheral lesions. J Thorac Oncol 5(10):1559–1563

    Article  PubMed  Google Scholar 

  4. Eigen D, Fergus R (2015) Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture. In: IEEE International conference on computer vision (ICCV), pp 2650–2658

  5. Engel J, Schops T, Cremers D (2014) Lsd-slam: large-scale direct monocular slam. In: European conference in computer vision (ECCV), pp 834–849

  6. Garrido-Jurado S, noz Salinas RM, Madrid-Cuevas F, Marín-Jiménez M (2014) Automatic generation and detection of highly reliable fiducial markers under occlusion. Pattern Recognit 47(6):2280–2292

    Article  Google Scholar 

  7. Gilbert C, Akulian J, Ortiz R, Lee H, Yarmus L (2014) Novel bronchoscopic strategies for the diagnosis of peripheral lung lesions: present techniques and future directions. Respirology 19(5):636–644

    Article  PubMed  Google Scholar 

  8. Goodfellow I, Bengio Y, Courville A (2016) Deep Learning. MIT Press. http://www.deeplearningbook.org

  9. Hayashi Y, Misawa K, Oda M, Hawkes DJ, Mori K (2016) Clinical application of a surgical navigation system based on virtual laparoscopy in laparoscopic gastrectomy for gastric cancer. Int J Comput Assist Radiol Surg 11(5):827–836

    Article  PubMed  Google Scholar 

  10. Herth FJ, Eberhardt R, Sterman D, Silvestri GA, Hoffmann H, Shah PL (2015) Bronchoscopic transparenchymal nodule access (btpna): first in human trial of a novel procedure for sampling solitary pulmonary nodules. Thorax 70(4):326–332

    Article  PubMed  Google Scholar 

  11. Kazhdan M, Bolitho M, Hoppe H (2006) Poisson surface reconstruction. In: Eurographics symposium on geometry processing, pp 61–70

  12. Kingma DP, Ba J (2015) Adam: a method for stochastic optimization. In: International conference on learning representations (ICLR)

  13. Leong S, Ju H, Marshall H, Bowman R, Yang I, Ree AM, Saxon C, Fong KM (2012) Electromagnetic navigation bronchoscopy: a descriptive analysis. J Thorac Dis 4(2):173–185

    PubMed  PubMed Central  Google Scholar 

  14. Liu F, Shen C, Lin G, Reid I (2016) Learning depth from single monocular images using deep convolutional neural fields. IEEE Trans Pattern Anal Mach Intell 38(10):2024–2039

    Article  PubMed  Google Scholar 

  15. Lorensen, W.E., Cline HE (1987) Marching cubes: a high resolution 3d surface construction algorithm. In: ACM SIGGRAPH, pp 163–169

  16. Luo X, Feuerstein M, Deguchi D, Kitasaka T, Takabatake H, Mori K (2012) Development and comparison of new hybrid motion tracking for bronchoscopic navigation. Med Image Anal 16(3):577–596

    Article  PubMed  Google Scholar 

  17. Mahmoud N, Cirauqui I, Hostettler A, Doignon C, Soler L, Marescaux J, Montiel JMM (2017) Orbslam-based endoscope tracking and 3d reconstruction. In: International workshop on computer-assisted and robotic endoscopy (CARE), pp 72–83

  18. Maier-Hein L, Mountney P, Bartoli A, Elhawary H, Elson D, Groch A, Kolb A, Rodrigues M, Sorger J, Speidel S, Stoyanov D (2013) Optical techniques for 3d surface reconstruction in computer-assisted laparoscopic surgery. Med Image Anal 17(8):974–996

    Article  CAS  PubMed  Google Scholar 

  19. Malti A, Bartoli A (2014) Combining conformal deformation and cook-torrance shading for 3-d reconstruction in laparoscopy. IEEE Trans Biomed Eng 61(6):1684–1692

    Article  PubMed  Google Scholar 

  20. Matusik W, Pfister H, Brand M, McMillan L (2003) A data-driven reflectance model. ACM Trans Graph 22(3):759–769

    Article  Google Scholar 

  21. Merritt SA, Khare R, Bascom R, Higgins WE (2013) Interactive ct-video registration for the continuous guidance of bronchoscopy. IEEE Trans Med Imaging 32(8):1376–1396

    Article  PubMed  PubMed Central  Google Scholar 

  22. Mirota D, Wang H, Taylor R, Ishii M, Gallia G, Hager G (2012) A system for video-based navigation for endoscopic endonasal skull base surgery. IEEE Trans Med Imaging 31(4):963–976

    Article  PubMed  Google Scholar 

  23. Mur-Artal R, Montiel JMM, Tardos JD (2015) Orb-slam: a versatile and accurate monocular slam system. IEEE Trans Robot 31(5):1147–1163

    Article  Google Scholar 

  24. Mura M, Abu-Kheil Y, Ciuti G, Visentini-Scarzanella M, Menciassi A, Dario P, Dias J, Seneviratne L (2016) Vision-based haptic feedback for capsule endoscopy navigation: a proof of concept. J Micro Bio Robot 11(1):35–45

    Article  Google Scholar 

  25. Reiter, A., Leondard, S., Sinha, A., Ishii, M., Taylor, R.H., Hager, G.D.: Endoscopic-ct: learning-based photometric reconstruction for endoscopic surgery. In: SPIE medical imaging, pp 1–6 (2016)

  26. Siegel RL, Miller KD, Jemal A (2016) Cancer statistics, 2016. CA A Cancer J Clin 66(1):7–30

    Article  Google Scholar 

  27. Szeliski R, Zabih R, Scharstein D, Veksler O, Kolmogorov V, Agarwala A, Tappen M, Rother C (2008) A comparative study of energy minimization methods for markov random fields with smoothness-based priors. IEEE Trans Pattern Anal Mach Intell 30(6):1068–1080

    Article  PubMed  Google Scholar 

  28. Tagliasacchi A, Alhashim I, Olson M, Zhang H (2012) Mean curvature skeletons. Comput Graph Forum 31(5):1735–1744

    Article  Google Scholar 

  29. Umeyama S (1991) Least-squares estimation of transformation parameters between two point patterns. IEEE Trans Pattern Anal Mach Intell 13(4):376–380

    Article  Google Scholar 

  30. Visentini-Scarzanella M, Kawasaki H (2015) Simultaneous camera, light position and radiant intensity distribution calibration. In: Pacific rim symposium on image and video technology (PSIVT), pp 557–571

  31. Visentini-Scarzanella M, Mylonas GP, Stoyanov D, Yang GZ: i-brush: A gaze-contingent virtual paintbrush for dense 3d reconstruction in robotic assisted surgery. In: International conference on medical image computing and computer-assisted intervention (MICCAI), pp 353–360

  32. Weisstein EW (2002) Sphere point picking. Tech. rep, Wolfram MathWorld

    Google Scholar 

  33. Zhang Z (2000) A flexible new technique for camera calibration. IEEE Trans Pattern Anal Mach Intell 22(11):1330–1334

    Article  Google Scholar 

  34. Zhao Q, Price T, Pizer S, Niethammer M, Alterovitz R, Rosenman J (2016) The endoscopogram: a 3d model reconstructed from endoscopic video frames. In: International conference on medical image computing and computer-assisted intervention (MICCAI), pp 439–447

Download references

Acknowledgements

M.V.S. was supported by the Toshiba Fellowship Programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Visentini-Scarzanella.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical standards

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

This article does not contain any patient data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Visentini-Scarzanella, M., Sugiura, T., Kaneko, T. et al. Deep monocular 3D reconstruction for assisted navigation in bronchoscopy. Int J CARS 12, 1089–1099 (2017). https://doi.org/10.1007/s11548-017-1609-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-017-1609-2

Keywords

Navigation