Skip to main content
Log in

RX architectures for real-time anomaly detection in hyperspectral images

  • Special Issue
  • Published:
Journal of Real-Time Image Processing Aims and scope Submit manuscript

Abstract

In the field of hyperspectral image processing, anomaly detection (AD) is a deeply investigated task whose goal is to find objects in the image that are anomalous with respect to the background. In many operational scenarios, detection, classification and identification of anomalous spectral pixels have to be performed in real time to quickly furnish information for decision-making. In this framework, many studies concern the design of computationally efficient AD algorithms for hyperspectral images in order to assure real-time or nearly real-time processing. In this work, a sub-class of anomaly detection algorithms is considered, i.e., those algorithms aimed at detecting small rare objects that are anomalous with respect to their local background. Among such techniques, one of the most established is the Reed–Xiaoli (RX) algorithm, which is based on a local Gaussian assumption for background clutter and locally estimates its parameters by means of the pixels inside a window around the pixel under test (PUT). In the literature, the RX decision rule has been employed to develop computationally efficient algorithms tested in real-time systems. Initially, a recursive block-based parameter estimation procedure was adopted that makes the RX processing and the detection performance differ from those of the original RX. More recently, an update strategy has been proposed which relies on a line-by-line processing without altering the RX detection statistic. In this work, the above-mentioned RX real-time oriented techniques have been improved using a linear algebra-based strategy to efficiently update the inverse covariance matrix thus avoiding its computation and inversion for each pixel of the hyperspectral image. The proposed strategy has been deeply discussed pointing out the benefits introduced on the two analyzed architectures in terms of overall number of elementary operations required. The results show the benefits of the new strategy with respect to the original architectures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Reed, I.S., Yu, X.: Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution. IEEE Trans. Acoust. Speech Signal Process. 38(10), 1760–1770 (1990)

    Article  Google Scholar 

  2. Stein, D.W.J., Beaven, S.G., Hoff, L.E., Winter, E.M., Schaum, A.P., Stocker, A.D.: Anomaly detection from hyperspectral imagery. IEEE Signal Process. Mag. 19(1), 58–69 (2002)

    Article  Google Scholar 

  3. Ashton, E.A.: Detection of subpixel anomalies in multispectral infrared imagery using an adaptive Bayesian classifier. IEEE Trans. Geosci. Remote Sens. 36(2), S06–S17 (1998)

    Article  Google Scholar 

  4. Carlotto, M.J.: A cluster-based approach for detecting man-made objects and changes in imagery. IEEE Trans. Geosci. Remote Sens. 43(2), 374–387 (2005)

    Article  Google Scholar 

  5. Chang, C.-I., Du, Q.: Estimation of number of spectrally distinct signal sources in hyperspectral imagery. IEEE Trans. Geosci. Remote Sens. 42(3), 608–619 (2004)

    Article  Google Scholar 

  6. Chang, C-l: Orthogonal subspace projection (OSP) revisited: a comprehensive study and analysis. IEEE Trans. Geosci. Remote Sens. 43(3), S02–S18 (2005)

    Google Scholar 

  7. Du, Q., Nkovei, R.: Fast real-time onboard processing of hyperspectral imagery for detection and classification. J. Real Time Image Process. 4(3), 273–286 (2009)

    Article  Google Scholar 

  8. Skauli, T., Haavardsholm, T.V., Kasen, I., Arisholm, G., Kavara, A., Opsahl, T.O., Skaugen, A.: An airborne real-time hyperspectral target detection system. Proc. SPIE 7695, A1–6 (2010)

    Google Scholar 

  9. Tarabalka, Y., Haavardsholm, T.V., Kasen, I., Skauli, T.: Realtime anomaly detection in hyperspectral images using multivariate normal mixture models and GPU processing. J. Real Time Image Process. 4(3), 287–300 (2009)

    Article  Google Scholar 

  10. Park, K.S., Cho, S.H., Hong, S., Cho, W.D.: Real-time target detection architecture based on reduced complexity hyperspectral processing. EURASIP J. Adv. Signal Process. (Article ID 438051), 1–14 (2008)

    Google Scholar 

  11. Bing Zhang, et al.: Real-time target detection in hyperspectral images based on spatial-spectral information extraction. EURASIP J. Adv. Signal Process. 2012, 142

  12. Stellman, C.M., Hazel, G.G., Bucholtz, F., Michalowicz, J.V., Stocker, A., Schaaf, W.: Real-time hyperspectral detection and cuing. Opt. Eng. 39(7), 1928–1935 (2000)

    Article  Google Scholar 

  13. Eismann, M.T., Stocker, A.D., Nasrabadi, N.M.: Automated hyperspectral cueing for civilian search and rescue. Proc. IEEE 97(6), 1031–1055 (2009)

    Article  Google Scholar 

  14. Stevenson, B., O’Connor, R., Kendall, W., Stocker, A., Schaff, W., Holasek, R., Even, D., Alexa, D., Salvador, J., Eismann, M., Mack, R., Kee, P., Harris, S., Karch, B., Kershenstein, J.: The civil air patrol ARCHER hyperspectral sensor system. Proc. SPIE 5787, 17 (2005)

    Article  Google Scholar 

  15. Acito, N., Matteoli, S., Diani, M., Corsini, G.: Complexity-aware algorithm architecture for real-time enhancement of local anomalies in hyperspectral images, pp. 1861–8200. Springer, Berlin (2011)

    Google Scholar 

  16. Hunt, B.R., Cannon, T.M.: Non-stationary assumptions of Gaussian models of images. IEEE Trans. Syst. Man Cybern 6, 876–881 (1976)

    Article  MathSciNet  Google Scholar 

  17. Acito, N., Corsini, G., Diani, M.: Adaptive detection algorithm for full-pixel targets in hyperspectral images. IEE Proc. Vis. Image Signal Process. 152(6), 731–740 (2005)

    Google Scholar 

  18. Kwon, H., Der, S.Z., Nasrabadi, N.M.: Adaptive anomaly detection using subspace separation for hyperspectral imagery. Opt. Eng. 42(11), 3342–3351 (2003)

    Article  Google Scholar 

  19. Richards, J.A., Jia, X.: Remote sensing digital image processing. Springer, New York (1993)

    Book  Google Scholar 

  20. Matteoli, S., Diani, M., Corsini, G.: A tutorial overview of anomaly detection in hyperspectral images. IEEE Aerosp. Electron. Syst. Mag. 25(7), 5–28 (2010)

    Article  Google Scholar 

  21. Tapia, R.A., Lanius, C.,:Computational science: tools for a changing world. Rice University, (2001), [http://ceee.rice.edu/Books/CS/index.html]

  22. Golub, G.H., Van Loan, C.F.: Matrix computations, 3rd Edn, John Hopkins University Press (1996)

  23. Molero, J.M., Garzon, E.M., Garcia, I., Plaza, A.: Anomaly detection based on a parallel kernel RX algorithm for multicore platforms. J. Appl. Remote Sens. 6, 061503 (2012)

    Article  Google Scholar 

  24. Acito, N., Diani, M., Corsini, G., Residual striping reduction in hyperspectral images, 17th international conference on digital signal processing, 1–7, 2011

  25. Acito, N., Diani, M., Corsini, G.: Subspace-based striping noise reduction in hyperspectral images. IEEE Trans. Geosci. Remote Sens. 49(4), 1325–1342 (2011)

    Article  Google Scholar 

  26. Matteoli, S., Acito, N., Diani, M., Corsini, G.: An automatic approach to adaptive local background estimation and suppression in hyperspectral target detection. IEEE Trans. Geosci. Remote Sens. 49(2), 790–800 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Rossi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rossi, A., Acito, N., Diani, M. et al. RX architectures for real-time anomaly detection in hyperspectral images. J Real-Time Image Proc 9, 503–517 (2014). https://doi.org/10.1007/s11554-012-0292-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11554-012-0292-3

Keywords

Navigation