Skip to main content
Log in

Performance engineering to achieve real-time high dynamic range imaging

  • Original Research Paper
  • Published:
Journal of Real-Time Image Processing Aims and scope Submit manuscript

Abstract

Image-processing applications like high dynamic range imaging can be done efficiently in the gradient space. For it, the image has to be transformed to gradient space and back. While the forward transformation to gradient space is fast by using simple finite differences, the backward transformation requires the solution of a partial differential equation. Although one can use an efficient multigrid solver for the backward transformation, it shows that a straightforward implementation of the standard algorithm does not lead to satisfactory runtime results for real-time high dynamic range compression of larger 2D X-ray images even on GPUs. Therefore, we do a rigorous performance analysis and derive a performance model for our multigrid algorithm that guides us to an improved implementation, where we achieve an overall performance of more than 25 frames per second for 16.8 Megapixel images doing full high dynamic range compression including data transfers between CPU and GPU. Together with a simple OpenGL visualization it becomes possible to perform real-time parameter studies on medical data sets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. http://developer.download.nvidia.com/compute/DevZone/docs/html/CUDALibraries/doc/CUFFT_Library.pdf.

References

  1. Brandt, A.: Multi-level adaptive solutions to boundary-value problems. Math. Comput. 31(138), 333–390 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  2. Briggs, W., Henson, V., McCormick, S.: A Multigrid Tutorial, 2nd edn. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, USA (2000)

  3. Christadler, I., Köstler, H., Rüde, U.: Robust and efficient multigrid techniques for the optical flow problem using different regularizers. In: Hülsemann F, Kowarschik M, Rüde U (eds) Proceedings of 18th Symposium Simulationstechnique ASIM 2005, SCS Publishing House, Erlangen, Germany, Frontiers in Simulation, vol. 15, pp. 341–346, preprint version published as Tech. Rep. 05-6 (2005)

  4. Christen, M., Schenk, O., Burkhart, H.: Patus: A code generation and autotuning framework for parallel iterative stencil computations on modern microarchitectures. In: In International Parallel and Distributed Processing Symposium (IPDPS), IEEE, pp. 676–687 (2011)

  5. Douglas C., Hu J., Kowarschik M., Rüde U., Wei C.: Cache optimization for structured and unstructured grid multigrid. Electr. Transact. Numer. Anal. (ETNA) 10:21–40 (2000)

    MATH  Google Scholar 

  6. Fattal R., Lischinski D., Werman M.: (2002) Gradient domain high dynamic range compression. ACM Transact. Graph. 21(3):249–256

    Article  Google Scholar 

  7. Frigo, M., Strumpen, V.: Cache oblivious stencil computations. In: Arvind, Rudolph L (eds.) Proceedings of the 19th annual international conference on Supercomputing, ACM, pp 361–366 (2005)

  8. Gradl, T., Freundl, C., Köstler, H., Rüde, U.: Scalable multigrid. In: Wagner, S., Steinmetz, M., Bode, A., Brehm, M. (eds) High Performance Computing in Science and Engineering. Garching/Munich 2007, LRZ, KONWIHR, Springer, Berlin, pp. 475–483 (2008)

  9. Hackbusch, W.: Multi-Grid Methods and Applications. Springer, Berlin (1985)

  10. He, K., Sun, J., Tang, X.: Guided image filtering. Computer Vision–ECCV 2010 pp. 1–14 (2010)

  11. Hülsemann, F., Kowarschik, M., Mohr, M., Rüde, U.: Parallel geometric multigrid. In: Bruaset A, Tveito A (eds) Numerical Solution of Partial Differential Equations on Parallel Computers, Lecture Notes in Computational Science and Engineering, vol. 51, Springer, Berlin, chap. 5, pp. 165–208 (2005)

  12. Kamil, S., Chan, C., Oliker, L., Shalf, J., Williams, S.: An auto-tuning framework for parallel multicore stencil computations. In: In International Parallel and Distributed Processing Symposium (IPDPS), pp. 1–12 (2010)

  13. Köstler, H.: A Multigrid Framework for Variational Approaches in Medical Image Processing and Computer Vision. PhD thesis, Friedrich-Alexander-Universität Erlangen-Nürnberg (2008)

  14. Köstler H., Stürmer M., Rüde U.: A fast full multigrid solver for applications in image processing. Numerical linear algebra with applications 15(2–3):187–200 (2008)

    MATH  MathSciNet  Google Scholar 

  15. Kowarschik, M., Wei, C., Rüde, U.: DiMEPACK: a cache–optimized multigrid library. In: Arabnia H (ed.) Proceedings of the International Conference on Parallel and Distributed Processing Techniques and Applications (PDPTA 2001), CSREA Press, Irvine, CA, USA, Las Vegas, NV, USA, vol. I, pp. 425–430 (2001)

  16. Levin, A., Zomet, A., Peleg, S., Weiss, Y.: Seamless image stitching in the gradient domain. Lecture Notes in Computer Science, Computer Vision-ECCV 2004 3024/2004:377–389 (2004)

  17. McCann, J., Pollard, N.: Real-time gradient-domain painting. ACM Transact. Graphics-TOG 27(3):93–93 (2008)

    Google Scholar 

  18. Schäfer, A., Fey, D.: High Performance Stencil Code Algorithms for GPGPUs. Procedia Comput. Sci. 4, 2027–2036 (2011)

    Article  Google Scholar 

  19. Stürmer, M., Treibig, J., Rüde, U.: Optimising a 3d multigrid algorithm for the IA-64 architecture. Int. J. Comput. Sci. Eng. 4(1), 29–35 (2008)

    Google Scholar 

  20. Stürmer, M., Wellein, G., Hager, G., Köstler, H., Rüde, U.: Challenges and potentials of emerging multicore architectures. In: Wagner, S., Steinmetz, M., Bode, A., Brehm, M. (eds.) High Performance Computing in Science and Engineering. Garching/Munich 2007, LRZ, KONWIHR, Springer, Berlin, pp. 551–566 (2008)

  21. Trottenberg, U., Oosterlee, C., Schüller, A.: Multigrid. Academic Press, San Diego, CA, USA (2001)

  22. Wang, T., Ke, W., Zwao, D., Chen, F., Chiu, C: Block-based gradient domain high dynamic range compression design for real-time applications. In: Image Processing, 2007. ICIP 2007. IEEE International Conference on, IEEE Computer Society Washington, DC, USA, vol. 3, pp. 561–564 (2007)

  23. Wienands, R., Joppich, W.: Practical Fourier analysis for multigrid methods, Numerical Insights, vol. 5, Chapmann and Hall/CRC Press, Boca Raton, Florida, USA (2005)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harald Köstler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Köstler, H., Stürmer, M. & Pohl, T. Performance engineering to achieve real-time high dynamic range imaging. J Real-Time Image Proc 11, 127–139 (2016). https://doi.org/10.1007/s11554-012-0312-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11554-012-0312-3

Keywords

Navigation