Skip to main content
Log in

Optimized convolutional neural network by firefly algorithm for magnetic resonance image classification of glioma brain tumor grade

  • Special Issue Paper
  • Published:
Journal of Real-Time Image Processing Aims and scope Submit manuscript

Abstract

The most frequent brain tumor types are gliomas. The magnetic resonance imaging technique helps to make the diagnosis of brain tumors. It is hard to get the diagnosis in the early stages of the glioma brain tumor, although the specialist has a lot of experience. Therefore, for the magnetic resonance imaging interpretation, a reliable and efficient system is required which helps the doctor to make the diagnosis in early stages. To make classification of the images, to which class the glioma belongs, convolutional neural networks, which proved that they can obtain an excellent performance in the image classification tasks, can be used. Convolutional network hyperparameters’ tuning is a very important issue in this domain for achieving high accuracy on the image classification; however, this task takes a lot of computational time. Approaching this issue, in this manuscript, we propose a metaheuristics method to automatically find the near-optimal values of convolutional neural network hyperparameters based on a modified firefly algorithm and develop a system for automatic image classification of glioma brain tumor grades from magnetic resonance imaging. First, we have tested the proposed modified algorithm on the set of standard unconstrained benchmark functions and the performance is compared to the original algorithm and other modified variants. Upon verifying the efficiency of the proposed approach in general, it is applied for hyperparameters’ optimization of the convolutional neural network. The IXI dataset and the cancer imaging archive with more collections of data are used for evaluation purposes, and additionally, the method is evaluated on the axial brain tumor images. The obtained experimental results and comparative analysis with other state-of-the-art algorithms tested under the same conditions show the robustness and efficiency of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278 (1998). https://doi.org/10.1109/5.726791

    Article  Google Scholar 

  2. Milletari, F., Navab, N., Ahmadi, S.A.: V-net: Fully convolutional neural networks for volumetric medical image segmentation. In: 2016 Fourth International Conference on 3D Vision (3DV) (IEEE, 2016), pp. 565–571

  3. Christ, P.F., Ettlinger, F., Grün, F., Elshaera, M.E.A., Lipkova, J., Schlecht, S., Ahmaddy, F., Tatavarty, S., Bickel, M., Bilic, P., et al.: Automatic liver and tumor segmentation of CT and MRI volumes using cascaded fully convolutional neural networks. arXiv preprint. arXiv:1702.05970 (2017)

  4. Postavaru, S., Stoean, R., Stoean, C., Caparros, G.J.: Adaptation of deep convolutional neural networks for cancer grading from histopathological images. In: Rojas, I., Joya, G., Catala, A. (eds.) Advances in Computational Intelligence, pp. 38–49. Springer International Publishing, Cham (2017)

    Chapter  Google Scholar 

  5. Yang, X.S.: Firefly algorithms for multimodal optimization. In: Watanabe, O., Zeugmann, T. (eds.) Stochastic Algorithms: Foundations and Applications, pp. 169–178. Springer, Berlin (2009)

    Chapter  Google Scholar 

  6. Bezdan, T., Zivkovic, M., Tuba, E., Strumberger, I., Bacanin, N., Tuba, M.: Glioma brain tumor grade classification from mri using convolutional neural networks designed by modified FA. In: Kahraman, C., Cevik Onar, S., Oztaysi, B., Sari, I.U., Cebi, S., Tolga, A.C. (eds.) Intelligent and Fuzzy Techniques: Smart and Innovative Solutions, pp. 955–963. Springer International Publishing, Cham (2021)

    Chapter  Google Scholar 

  7. Strumberger, I., Tuba, E., Bacanin, N., Zivkovic, M., Beko, M., Tuba, M.: Designing convolutional neural network architecture by the firefly algorithm. In: Proceedings of the 2019 International Young Engineers Forum (YEF-ECE), Costa da Caparica, Portugal, pp. 59–65 (2019)

  8. Tuba, M., Bacanin, N.: JPEG quantization tables selection by the firefly algorithm. In: 2014 International Conference on Multimedia Computing and Systems (ICMCS) (IEEE, 2014), pp. 153–158

  9. Bacanin, N., Tuba, M.: Firefly algorithm for cardinality constrained mean-variance portfolio optimization problem with entropy diversity constraint. Sci. World J. 2014, Article ID 721521 (2014). https://doi.org/10.1155/2014/721521

  10. Bacanin, N., Tuba, M., Jovanovic, R.: Hierarchical multiobjective RFID network planning using firefly algorithm. In: 2015 International Conference on Information and Communication Technology Research (ICTRC) (2015), pp. 282–285

  11. Strumberger, I., Bacanin, N., Tuba, M.: Enhanced firefly algorithm for constrained numerical optimization. In: 2017 IEEE Congress on Evolutionary Computation (CEC) (Ieee, 2017), pp. 2120–2127

  12. Tuba, M., Bacanin, N.: Artificial bee colony algorithm hybridized with firefly metaheuristic for cardinality constrained mean-variance portfolio problem. Appl. Math. Inf. Sci. 8(6), 2831 (2014). https://doi.org/10.12785/amis/080619

    Article  MathSciNet  Google Scholar 

  13. Karaboga, D., Basturk, B.: On the performance of artificial bee colony (ABC) algorithm. Appl. Soft Comput. 8(1), 687 (2008)

    Article  Google Scholar 

  14. Liu, J., Mao, Y., Liu, X., Li, Y.: A dynamic adaptive firefly algorithm with globally orientation. Math. Comput. Simul. 174, 76 (2020). https://doi.org/10.1016/j.matcom.2020.02.020

    Article  MathSciNet  MATH  Google Scholar 

  15. Zhu, Q., Xiao, Y., Chen, W., Ni, C., Chen, Y.: Research on the improved mobile robot localization approach based on firefly algorithm. Chin. J. Sci. Instrum. 37, 323 (2016)

    Google Scholar 

  16. Kaveh, A., Javadi, S.: Chaos-based firefly algorithms for optimization of cyclically large-size braced steel domes with multiple frequency constraints. Comput. Struct. 214, 28 (2019). https://doi.org/10.1016/j.compstruc.2019.01.006

    Article  Google Scholar 

  17. Yang, X.S.: Firefly algorithm, Lévy flights and global optimization. In: Bramer, M., Ellis, R., Petridis, M. (eds.) Research and Development in Intelligent Systems XXVI, pp. 209–218. Springer, London (2010)

    Chapter  Google Scholar 

  18. Yu, S., Zhu, S., Ma, Y., Mao, D.: A variable step size firefly algorithm for numerical optimization. Appl. Math. Comput. 263, 214 (2015). https://doi.org/10.1016/j.amc.2015.04.065

    Article  MathSciNet  MATH  Google Scholar 

  19. Anaraki, A.K., Ayati, M., Kazemi, F.: Magnetic resonance imaging-based brain tumor grades classification and grading via convolutional neural networks and genetic algorithms. Biocybern. Biomed. Eng. 39(1), 63 (2019). https://doi.org/10.1016/j.bbe.2018.10.004

    Article  Google Scholar 

  20. IXI dataset (2015). http://www.brain-development.org/ixi-dataset/. Accessed 7 Mar 2021

  21. Clark, K.W., Vendt, B.A., Smith, K.E., Freymann, J.B., Kirby, J.S., Koppel, P., Moore, S.M., Phillips, S.R., Maffitt, D.R., Pringle, M., Tarbox, L., Prior, F.W.: The cancer imaging archive (TCIA): maintaining and operating a public information repository. J. Digit. Imaging 26, 1045 (2013)

    Article  Google Scholar 

  22. Scarpace, L., Flanders, A.E., Jain, R., Mikkelsen, T., Andrews, D.W.: Data from REMBRANDT. Cancer Imaging Arch. 10, K9 (2015)

    Google Scholar 

  23. Scarpace, L., Mikkelsen, L., Cha, T., Rao, S., Tekchandani, S., Gutman, S., Pierce, D.: Radiology data from the cancer genome atlas glioblastoma multiforme [TCGA-GBM] collection. Cancer Imaging Arch. 11(4), 11 (2016)

    Google Scholar 

  24. Pedano, N., Flanders, A. E., Scarpace, L., Mikkelsen, T., Eschbacher, J. M., Hermes, B., Ostrom, Q.: Radiology data from the cancer genome atlas low grade glioma [TCGA-LGG] collection. Cancer Imaging Arch. (2016)

  25. Cheng, J., Huang, W., Cao, S., Yang, R., Yang, W., Yun, Z., Wang, Z., Feng, Q.: Enhanced performance of brain tumor classification via tumor region augmentation and partition. PLoS One 10(10), e0140381 (2015)

    Article  Google Scholar 

  26. Kalbkhani, H., Shayesteh, M.G., Zali-Vargahan, B.: Robust algorithm for brain magnetic resonance image (MRI) classification based on GARCH variances series. Biomed. Signal Process. Control 8(6), 909 (2013). https://doi.org/10.1016/j.bspc.2013.09.001

    Article  Google Scholar 

  27. Zacharaki, E.I., Wang, S., Chawla, S., Soo Yoo, D., Wolf, R., Melhem, E.R., Davatzikos, C.: Classification of brain tumor type and grade using MRI texture and shape in a machine learning scheme. Magn. Reson. Med. 62(6), 1609 (2009)

    Article  Google Scholar 

  28. Stoean, R.: Analysis on the potential of an EA-surrogate modelling tandem for deep learning parametrization: an example for cancer classification from medical images. Neural Comput. Appl. 32(2), 313 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

The paper is supported by the Ministry of Education, Science and Technological Development of Republic of Serbia, Grant no. III-44006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nebojsa Bacanin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bacanin, N., Bezdan, T., Venkatachalam, K. et al. Optimized convolutional neural network by firefly algorithm for magnetic resonance image classification of glioma brain tumor grade. J Real-Time Image Proc 18, 1085–1098 (2021). https://doi.org/10.1007/s11554-021-01106-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11554-021-01106-x

Keywords

Navigation