Skip to main content
Log in

Virtual models in 3D digital reconstruction: detection and analysis of symmetry

  • Original Research Paper
  • Published:
Journal of Real-Time Image Processing Aims and scope Submit manuscript

Abstract

Cultural Heritage (CH) artifacts generally possess symmetry of reflection, rotation, translation and glide reflection in their shape. Similarity measures are used to determine complex 3D models where symmetry is considered to be one of the similarity signatures. This work presents the methodology of detecting symmetry in 3D objects based on the three techniques: (1) Eigenvalues and Eigenvectors, (2) local surface discontinuity, and (3) pixel orientation. In this work, these methods have been modified suitably for the detection of symmetry in CH artifacts. Among these methods, it is found that the first two methods yield better performance on the symmetry signature estimation of 98 percent for complex models and up to 100% for primitive models. The execution time of the proposed methods is compared with the state-of-the-art approaches available in the literature. Three levels of random 3D models available in the internet repository are analyzed for efficiency, performance and robustness. At each level, the accuracy of the Eigenvalue method and the local discontinuity method is found to be better than the pixel orientation method. The modified algorithms have been tested for better performance with F-score, robustness, and execution time with 3D benchmark dataset and cultural heritage dataset available in the literature. Future work shall be extended by applying the symmetry features as constraints for the effective search of CH artifacts in digital repositories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Spring, A.P., Peters, C., Minns, T.: Using mid-range laser scanners to digitize cultural-heritage sites. IEEE Comput. Graph. Appl. 30(3), 15–19 (2010)

    Article  Google Scholar 

  2. Biasotti, S., Moscoso, T.E., Spagnuolo, M.: Experimental similarity assessment for a collection of fragmented artifacts. Proc. graphics workshop on 3D object retrieval. In: The Euro Graphics Association, Delft, The Netherlands, 2018, 103–110 (2018)

  3. Hamada, J., Amano, K., Fukuda, S.T.: A group theoretical model of symmetry cognition. Acta Psychol. 171, 128–137 (2016)

    Article  Google Scholar 

  4. Funk, C., Lee, S., Oswald, M.R., et al.: 2017 ICCV challenge: detecting symmetry in the wild. IEEE Int. Conf. Comput. Vis. Worksh. 2017, 1692–1701 (2017)

    Google Scholar 

  5. Antonio, D.S., Reimar, T., Pedro, S., et al.: Modeling a virtual robotic system for automated 3D digitization of cultural heritage artifacts. J. Cult. Herit. 19, 531–537 (2016)

    Article  Google Scholar 

  6. Banerjee, D., Yu, K., Aggarwal, G.: Robotic arm based 3d reconstruction test automation. IEEE Access 6, 7206–7213 (2018)

    Article  Google Scholar 

  7. Rajkumar, G., Sreekumar, M.: Robot-assisted 3d digital reconstruction of heritage artifacts: area similarity approach. Ind. Robot 47(4), 521–533 (2020)

    Article  Google Scholar 

  8. Calisi, D., Cottefoglie, F., D’Agostini, L., et al.: Robotics and virtual reality for cultural heritage digitization and fruition. Int. Arch. Photogram. Remote Sens. Spatial Inform. Sci. 42, 503–508 (2017)

    Article  Google Scholar 

  9. Carbone, G., Tedeschi, F., Gallozzi, A.: A robotic mobile platform for service tasks in cultural heritage. Int. J. Adv. Robot. Syst. 12(88), 1–10 (2015)

    Google Scholar 

  10. Belhi, A., Al-Ali, A.K., Bouras, A., et al.: Investigating low-delay deep learning-based cultural image reconstruction. J. Real Time Image Process. 17, 1911–1926 (2020)

    Article  Google Scholar 

  11. Lars, M., Michael, O., Michael, N., et al.: Occupancy networks: learning 3d reconstruction in function space. IEEE Conf. Comput. Vis. Pattern Recogn, 4460–4470 (2019)

  12. Ralha, R., Falcao, G., Amaro, J., et al.: Parallel refinement of slanted 3D reconstruction using dense stereo induced from symmetry. J. Real Time Image Process. 16, 1037–1055 (2019)

    Article  Google Scholar 

  13. Mingming, H., Zhichun, M., Hui, Z.: Efficient image classification via sparse coding spatial pyramid matching representation of SIFT-WCS-LPT feature. IET Image Process. 10(1), 61–67 (2016)

    Article  Google Scholar 

  14. Montserrat, A.G., Wendy, A., Garduño, E.: Mirror symmetry detection in curves represented by means of the Slope Chain Code. Pattern Recogn. 87, 67–79 (2019)

    Article  Google Scholar 

  15. Patel, D., Nagar, R., Raman, S.: Reflection symmetry aware image retargeting. Pattern Recogn. Lett. 125, 179–186 (2019)

    Article  Google Scholar 

  16. Veltkamp, R.C., Latecki, L.J.: Properties and performance of shape similarity measures. In: Vladimir, B. (Ed.): Data science and classification 2006, 47–56 (2006)

  17. Tevs, A., Huang, Q., Wand, M., et al.: Relating shapes via geometric symmetries and regularities. ACM Trans. Graph. 33(4), 119:1–119:12 (2014)

  18. Shi, Z., Alliez, P., Desbrun, M., et al.: Symmetry and orbit detection via Lie-algebra voting. Comput. Graph. Forum 35(5), 217–227 (2016)

    Article  Google Scholar 

  19. Sipiran, I., Gregor, R., Schreck, T.: Approximate symmetry detection in partial 3D meshes. Comput. Graph. Forum 33(7), 131–140 (2014)

    Article  Google Scholar 

  20. Cicconet, M., Hildebrand, D. G. C., Elliott, H.: Finding mirror symmetry via registration and optimal symmetric pairwise assignment of curves. In: Proc. IEEE International Conference on Computer Vision Workshop, 2017, 1749–1758 (2017)

  21. Nagar, R., Raman., S.: Detecting approximate reflection symmetry in a point set using optimization on manifold. IEEE Trans. Signal Process. 67(6): 1582–1595 (2019)

  22. Kang, W., Chi-yu, F., Carlos, E, C., et al.: Detecting asymmetry in the presence of symmetry with maximum likelihood three-dimensional reconstructions of virus from electron microscope images. IET Image Process. 10(8), 624–629 (2016)

  23. Sawada, T., Zaidi, Q.: Rotational symmetry in a 3D scene and its 2D image. J. Math. Psychol. 87, 108–125 (2018)

    Article  MathSciNet  Google Scholar 

  24. Zou, H.L., Lee, Y.T.: Skewed rotational symmetry detection from a 2d line drawing of a 3d polyhedral object. Comput. Aided Design 38, 1224–1232 (2006)

    Article  Google Scholar 

  25. Li, B., Johan, H., Ye. Y., et al.: Efficient 3d reflection symmetry detection: a view-based approach, Graph Models 83, 2–14 (2016)

  26. Gao, Y., Yuille, A.L.: Estimation of 3d category-specific object structure: symmetry, manhattan and/or multiple images. Int. J. Comput. Vis. 127(10), 1501–1526 (2019)

    Article  MathSciNet  Google Scholar 

  27. Lin, R.M., Mottershead, J.M., Ng, T.: A state-of-the-art review on theory and engineering applications of Eigenvalue and Eigenvector derivatives. Mech. Syst. Signal Process. 138(106536), 1–32 (2020)

    Google Scholar 

  28. Chen., H, Lei., W, Yonghui., Z, Chunmeng., W.: Dominant symmetry plane detection for point-based 3d models. Adv. Multimed. 2020 8861367:1–8 (2020)

  29. Cicconet., M, Geiger., D, Gunsalus., KC, Werman., M.: Mirror symmetry histograms for capturing geometric properties in images. IEEE Conf. Comput. Vis. Pattern Recogn. 2014, 2981–2986 (2014)

  30. Elawady., M, Barat., C, Ducottet., C, Colantoni., P.: Global bilateral symmetry detection using multiscale mirror histograms, advanced concepts for intelligent vision systems, lecture notes in computer science, 10016 (2016)

  31. Nagar, R., Raman, S.: 3DSymm: robust and accurate 3d reflection symmetry detection. Pattern Recogn, 107(107483):1–11 (2020)

  32. Mitra, N.J., Guibas, M.P., Pauly, M., et al.: Partial and symmetry detection for 3D geometry. ACM Trans. Graph. 25(3), 560–568 (2006)

    Article  Google Scholar 

  33. Cailliere, D., Denis, F., Pele, D., et al.: 3D mirror symmetry detection using hough transform. Proc. Int. Conf. Image Process. 2008, 1772–1775 (2008)

    Google Scholar 

  34. Ecins., A, Fermuller., C, Aloimonos., Y.: Detecting reflectional symmetries in 3d data through symmetrical fitting. IEEE Int. Conf. Comput. Vis. Worksh. 2017, 1779–1783 (2017)

  35. Speciale., P, Oswald., M.R, Cohen., A, et al.: A symmetry prior for convex variational 3d reconstruction. Eur. Conf. Comput. Vis. Springer 2016, 313–328 (2016)

  36. Wu, Z., Song, S., Khosla, A., et al.: 3D ShapeNets: A deep representation for volumetric shape modeling. In: Proceedings of 28th IEEE Conference on Computer Vision and Pattern Recognition, 2015, 1912–1920 (2015)

  37. Payne, A., Cole, K., Simon, K., et al.: Designing the next generation virtual museum: making 3D artifacts available for viewing and download. In: Proceedings of the 2009 CAA: Making History Interactive, 2009, 292–297 (2009)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sreekumar Muthuswamy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gothandaraman, R., Muthuswamy, S. Virtual models in 3D digital reconstruction: detection and analysis of symmetry. J Real-Time Image Proc 18, 2301–2318 (2021). https://doi.org/10.1007/s11554-021-01115-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11554-021-01115-w

Keywords

Navigation