Skip to main content
Log in

Chemotaxonomy of Pochonia and other conidial fungi with Verticillium-like anamorphs

  • Published:
Mycological Progress Aims and scope Submit manuscript

Abstract

Pochonins are antiviral and antiparasitic resorcylic acid lactones (RAL) structurally related to monorden. They were found in the invertebrate-associated fungus Pochonia chlamydosporia. Their production and distribution was studied by means of High Performance Liquid Chromatography with UV-visual and mass spectrometric detection (HPLC-UV/Vis and HPLCMS) in cultures of Pochonia species and further conidial fungi with Verticillium-like anamorphs that had until recently been included in Verticillium sect. Prostrata. The results support the recent generic segregation by Gams, Zare and co-workers because pochonins were found to occur exclusively in species of the genus Pochonia. With few exceptions, the production of RAL appeared to be a rather constant feature in cultures of P. chlamydosporia from around the world. According to preliminary results, secondary metabolite profiles in strains of allied genera such as Lecanicillium, Haptocillium and Rotiferophthora are different from those encountered in Pochonia. The alkaloid pseurotin A was found as main metabolite in several of the P. chlamydosporia isolates examined. As inferred from HPLC profiling data, strains of P. suchlasporia clustered into at least three chemotypes. The ex-type strain of P. suchlasporia var. catenata produced monorden, while several other strains produced metabolites whose HPLC-UV and HPLC-MS characteristics were similar to the mycotoxins, aurovertin B and citreoviridin A. Yet different metabolites were detected in a third chemotype of P. suchlasporia. Differences in secondary metabolite profiles were also found in two strains of P. bulbillosa. While the ex-type strain was found devoid of all aforementioned compounds, CBS 247.68 contained the aurovertin-related metabolites detected in part of the P. suchlasporia isolates. The sequence of the ITS nrDNA of CBS 247.68 was different from that of the type strain but identical to the sequences of P. suchlasporia var. catenata. Several strains of the latter variety showed identical sequences, despite considerable variations in their HPLC metabolite profiles. Minisatellite PCR fingerprinting was found useful to segregate Pochonia at species and strain level, pointing toward the existence of further, cryptic species. The possible chemotaxonomical importance and ecological functions of secondary metabolites in these fungi is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Agatsuma T, Takahashi A, Kabuto C, Nozoe S (1993) Revised structure and stereochemistry of Hypothemycin. — Chemical and Pharmaceutical Bulletin 41: 373–375.

    CAS  Google Scholar 

  • Anke H (1997) Zearalenone and Zeanol. In Anke T (ed) Fungal Biotechnology, pp. 186–191. Chapman & Hall, Weinheim, Germany.

    Google Scholar 

  • Andersen B, Nielsen KF, Jarvis BB (2002) Characterization of Stachybotrys from water-damaged buildings based on morphology, growth, and metabolite production. — Mycologia 94: 392–403.

    CAS  Google Scholar 

  • Anke H, Stadler M, Mayer A & Sterner O (1995) Secondary metabolites with nematicidal activities from nematophagous fungi and ascomycetes. — Canadian Journal of Botany, 73 Supplement 1: S932–S939.

    Google Scholar 

  • Anke H, Sterner O (1997) Nematicidal metabolites from higher fungi. — Current Organic Chemistry 1: 361–374.

    CAS  Google Scholar 

  • Anke H, Sterner O (2002) Insecticidal and nematicidal metabolites from fungi. In Osiewacz HD (ed) The Mycota. Vol. X. Industrial applications, pp. 109–127. Springer Berlin/Heidelberg/ New York.

    Google Scholar 

  • Arora DK, Hirsch PR, Kelly BR (1996) PCR-based molecular discrimination of Verticillium chlamydosporium isolates. — Mycological Research 100: 801–809.

    CAS  Google Scholar 

  • Ayer WA, Lee SP, Tsuneda A, Hiratsuka Y (1980). The isolation, identification and bioassay of the antifungal metabolites produced by Monocillium nordinii. — Canadian Journal of Microbiology 26: 766–773.

    CAS  Google Scholar 

  • Basco LK, Le Bras J (1994) In vitro activity of mitochondrial ATP synthetase inhibitors against Plasmodium falciparum. — Journal of Eukaryotic Microbiology 41: 179–183.

    CAS  PubMed  Google Scholar 

  • Bloch P, Tamm C (1976) Pseurotin A, a new metabolite of Pseudeurotium ovale Stolk having an unusual hetero-spirocyclic system. — Helvetica Chimica Acta 59: 133–137.

    Article  CAS  PubMed  Google Scholar 

  • Bottalico A, Logrieco A (1998) Toxigenic Alternatia species of economic importance. In Sinha KK, Bhatnagar D (eds) Mycotoxins in agriculture and food safety, pp. 65–109. Marcel Dekker New York/Basel.

    Google Scholar 

  • Cataldi de Flombaum MA, Stoppani AOM (1981) Influence of efrapeptin, aurovertin and citreoviridin on the mitochondrial adenosine triphosphatase from Trypanosoma cruzi. — Molecular and Biochemical Parasitology 3: 143–155

    Article  CAS  PubMed  Google Scholar 

  • Chelkowski J (1998) Distribution of Fusarium spp. and their mycotoxins in cereal grains. In Sinha KK, Bhatnagar D (eds) Mycotoxins in agriculture and food safety, pp. 45–64. Marcel Dekker New York/Basel.

    Google Scholar 

  • Closse A, Huguenin R (1974) Isolierung und Strukturaufklärung von Chlamydocin. — Helvetica Chimica Acta 57: 533–545.

    Article  CAS  PubMed  Google Scholar 

  • Cruse M, Telerant R, Gallagher T, Lee T, Taylor JW (2002). Cryptic species in Stachybotrys chartarum. — Mycologia 94: 814–822.

    Google Scholar 

  • Cutler HG (1988) Perspectives on discovery of microbial phytotoxins with herbicidal activity. — Weed Technology 2: 525–532.

    CAS  Google Scholar 

  • Datta SC, Ghosh JJ (1983) Action of citreoviridin, a mycotoxin from Penicillium citreoviride, on the gamma-aminobutyric acid metabolism of the central nervous system. — Toxicon 1983, Supplement 3: 89–92.

    Google Scholar 

  • Delmotte P, Delmotte-Plaquee J (1953) A new antifungal substance of fungal origin. — Nature (London) 171: 344.

    CAS  Google Scholar 

  • Drechsler C (1941) Some hyphomycetes parasitic on free-living terricolous nematodes. — Phytopathology 31: 773–802.

    Google Scholar 

  • Dreyfuss MM, Leutwiller A, MacKenzie AR, Schnyder J, Traber RP, Mattes H (1994) Lactones compounds useful as pharmaceuticals. — European Patent No. EP 0606044-A1.

  • Espenshade MA, Calton GJ (1978) Monorden. — Belgian Patent application No. 873855.

  • Frisvad JC, Thrane U, Filtenborg O (1998) Role and use of secondary metabolites in fungal taxonomy. In Frisvad JC, Bridge PD, Arora DK (eds) Chemical fungal taxonomy, pp. 289–320. Marcel Dekker New York/Basel/Hong Kong.

    Google Scholar 

  • Gams W (1971) Cephalosporium-artige Schimmelpilze (Hyphomycetes), p. 189. Gustav Fischer Stuttgart.

    Google Scholar 

  • Gams W (1988) A contribution to the knowledge of nematophagous species of Verticiliium. — Netherlands Journal of Plant Pathology 94: 133–148.

    Article  Google Scholar 

  • Gams W, Van Zaayen A (1982) Contribution to the taxonomy and pathogenicity of fungicolous Verticillium species. I. Taxonomy. — Netherlands Journal of Plant Pathology 88: 57–78.

    Google Scholar 

  • Gams W, Zare R (2001) A revision of Verticillium section Prostrata. III. Generic classification. — Nova Hedwigia 72: 329–337.

    Google Scholar 

  • Glockling, SL (1998) Three new species of Rotiferophthora attacking bdelloid rotifers in Japan. — Mycological Research 102: 1142–1148.

    Google Scholar 

  • Gupta S, Peiser G, Nakajima T, Hwang Y-S (1994) Characterization of a phytotoxic cyclotetrapeptide, a novel chlamydocin analogue, from Verticillium coccosporum. — Tetrahedron Letters 35: 6009–6012.

    Article  CAS  Google Scholar 

  • Hellwig V, Mayer-Bartschmid A, Müller H, Greif G, Kleymann G, Zitzmann W, Tichy HV, Stadler M (2003) Antiviral and antiparasitic resorcylic acid lactones from Pochonia chlamydosporia var. catenulata. — Journal of Natural Products, in press.

  • Isaka M, Syuarnsestakorn C, Tanticharoen M, Kongsaeree P, Thebatanonth Y (2002) Aigalomycins A–E, new resorcylic macrolides from the marine mangrove fungus Aigialus parvus. — Journal of Organic Chemistry 67: 1561–1566.

    Article  CAS  PubMed  Google Scholar 

  • Jarutapat A, Isaka M, Hywel-Jones NL, Lertwerawat Y, Kamchonwong-paisan S, Kirtikara K, Tantcharoen M, Thebtharanonth Y (2001) Bioxanthracenes from the insect pathogenic fungus Cordyceps pseudomilitaris BCC 1620. 1.Taxonomy, Fermentation, Isolation and antimalarial activity. — Journal of Antibiotics 54: 29–35.

    Google Scholar 

  • Kerry BR, De Leij FA (1991) Biological compositions. World Patent No. WO91/01642.

  • Kerry BR (1995) Ecological considerations for the use of the nematophagous fungus, Verticillium chlamydosporium, to control plant parasitic nematodes. — Canadian Journal of Botany 73-Supplement 2: S65–S69.

    Google Scholar 

  • Khambay BPS, Bourne JM, Cameron S; Kerry BR, Zaki M, Javed CS (2000) A nematicidal metabolite from Verticillium chlamydosporium. — Pest Management Science 56: 1098–1099

    Article  CAS  Google Scholar 

  • Kirk PM, Cannon PF, David JA, Stalpers JA, eds (2001) Ainsworth & Bisby’s dictionary of the fungi. Ninth Edition. CAB International, Egham UK.

    Google Scholar 

  • Lam KS, Mamber SW, Pack EJ, Forenza S, Fernandes PB, Klaus DM (1998) The effects of space flight on the production of monorden by Humicola fuscoatra WC5157 in solid-state fermentation. — Applied Microbiology and Biotechnology 49: 579–583.

    Article  CAS  PubMed  Google Scholar 

  • Larsen TO, Svendsen A, Smedsgaard J (2001) Biochemical characterization of ochratoxin A producing strains of the genus Penicillium. — Applied and Environmental Microbiology 67: 3630–3635.

    Article  CAS  PubMed  Google Scholar 

  • Leinhos GME, Buchenauer H (1992) Inhibition of rust diseases of cereals by metabolic products of Verticillium chlamydosporium. — Journal of Phytopathology 136: 177–193.

    CAS  Google Scholar 

  • Lieckfeld E, Meyer W, Börner T (1993) Rapid identification and differentiation of yeasts by DNA and PCR fingerprinting. — Journal of Basic Microbiology 33: 413–426.

    Google Scholar 

  • Lowe PN, Beechey RB (1986) Binding of aurovertins and citreoviridin to mitochondrial ATPase. — Transactions of the Biochemical Society 14: 1203–1204

    CAS  Google Scholar 

  • López-Llorca IV, Moya M, Llinares A (1994) Effect of pH on growth and pigment production of nematophagous and entomogenous fungi. — Micologia Vegetale Mediterranea 8: 107–112.

    Google Scholar 

  • López-Llorca IV, Olivares-Bernabeu C (1998) Metabolites influencing pathogenicity of nematophagous fungi. In Bridge P, Coutecaudier Y, Clarkson J (eds) Molecular variability of fungal pathogens, pp. 171–186. CABInternational, Wallingford UK.

    Google Scholar 

  • Mantiri FR, Samuels GJ, Rahe JE, Honda BM (2001). Phylogenetic relationships in Neonectria species having Cylindrocarpon anamorphs inferred from mitochondrial ribosomal DNA sequences. — Canadian Journal of Botany 79: 334–340.

    Article  CAS  Google Scholar 

  • Matsuura H, Nakamori K, Omer EA, Hatakeyama C, Yoshihara T, Ichihara A (1998) Three lasiodiplodins from Lasiodiplodia theobromae ifo 31059. — Phytochemistry 49: 579–584.

    Article  CAS  Google Scholar 

  • Meyer W (1996) Identification of fungi using DNA-and PCR-fingerprinting a critical review. In Samson RA, Stalpers JD, Van der Mei D, Stouthamer AJ (eds) Culture collections to improve the quality of life, pp. 282–289. CBS, Baarn, The Netherlands.

    Google Scholar 

  • Messner R, Schweigkofler W, Ibl M, Berg G, Prillinger H (1996) Molecular characterization of the plant pathogen Verticillium dahliae Kleb. using RAPD-PCR and sequencing of the 18S rRNA gene. — Journal of Phytopathology 144: 347–354.

    Google Scholar 

  • Mirrington RX, Ritchie E, Shoppee CW, Sternhell S, Taylor WC (1964) Some metabolites of Nectria radicicola Gerlach & Nilsson (syn. Cylindrocarpon radicicola Wr.): The structure of Radicicol (Monorden). Tetrahedron Lett. 1964: 365–370.

    Google Scholar 

  • Myers-Keith P (1986) Method for increasing fertility in animals by controlling and stimulating ovulation with monorden manufactured by Diheterospora chlamydosporia. US Patent No. 4707492.

  • Nair MSR, Carey ST, James JC (1981) Metabolites of Pyrenomycetes. XIV. Structure and partial stereochemistry of the antibiotic macrolides hypothemycin and dihydrohypothemycin. — Tetrahedron 37: 2445–2449.

    Article  CAS  Google Scholar 

  • Nakajima H, Hamasaki T, Tanaka K, Kimura Y, Udagawa S, Horie Y (1989) Production of cyclosporin by fungi belonging to the genus Neocosmospora. — Agricultural and Biological Chemistry 53: 2291–2992.

    CAS  Google Scholar 

  • Nozawa K, Nakajima S (1979) Isolation of radicicol from Penicillium luteo-aurantium and meleagrin, a new metabolite from Penicillium meleagrinum. — Journal of Natural Products 42: 374–377.

    Article  CAS  Google Scholar 

  • Peltola J, Niessen L, Nielsen KF, Jarvis BB, Andersen B, Salkinoja-Salonen M, Möller EM (2002) Toxigenic diversity of two different RAPD groups of Stachybotrys chartarum isolates analyzed by potential for trichothecene production and for boar sperm cell motility inhibition. — Canadian Journal of Microbiology 48: 1017–1029.

    Article  CAS  PubMed  Google Scholar 

  • Richard JL (1990) Additional mycotoxins of potential importance to human and animal health. — Veterinary and Human Toxicology 32(Supplement): 63–70

    CAS  PubMed  Google Scholar 

  • Shimada Y, Ogawa T, Sato A, Kaneko I, Tsuita Y (1995) Induction of differentiation of HL-60-cells by the anti-fungal antibiotic, radicicol. — Journal of Antibiotics 48: 824–830.

    CAS  PubMed  Google Scholar 

  • Semar M, Anke H, Velten R, Steglich W, Sheldrick WS (1992) Screening for inhibitors of the glyoxylate cycle — inhibitors of malate synthase from higher fungi. In Kreysa D, Driesel AJ (eds.) DECHEMA Biotechnology conferences Vol. 5b, pp. 739–742. VCH, Weinheim, Germany.

    Google Scholar 

  • Skoubue P, Taylor JW, Frisvad JC, Lauritzen D, Larsen L, Albæk C, Boysen M, Rossen L (1999) Molecular methods for differentiation of closely related Penicillium species. In Samson RA, Pitt JI (eds) Integration of modern taxonomic methods for Aspergillus and Penicillium classification, pp. 179–188, Harwood Academic Publishers, Reading, U.K.

    Google Scholar 

  • Stadler M, Anke H, Arendholz WR, Hansske F, Anders U, Bergquist K-E, Sterner O (1993a) Lachnumon and lachnumol A, new metabolites with nematicidal and antimicrobial activities from the ascomycete Lachnum papyraceum. I. Fermentation, isolation and biological activities. — Journal of Antibiotics 46: 961–967.

    CAS  PubMed  Google Scholar 

  • Stadler M, Anke H, Sterner O (1993b) New biologically active compounds from the nematode-trapping fungus Arthrobotrys oligospora Fres. — Zeitschrift für Naturforschung 48c: 843–850.

    Google Scholar 

  • Stadler M, Mayer A, Anke H, Sterner O (1994a) Fatty acids and other compounds with nematicidal acitivity from cultures of Basidiomycetes. — Planta Medica 60: 128–132.

    CAS  PubMed  Google Scholar 

  • Stadler M, Steglich W, Dasenbrock J, Anke H, Sheldrick WS (1994b) Antibiotics from the nematode-trapping basidiomycete Nematoctonus robustus. — Natural Product Letters 4: 209–216.

    CAS  Google Scholar 

  • Stadler M, Wollweber H, Mühlbauer A, Asakawa Y, Hashimoto T, Rogers JD, Ju Y-M, Wetzstein H-G, Tichy H-V (2001). Molecular chemotaxonomy of Daldinia and other Xylariaceae. — Mycological Research 105: 1191–1205.

    CAS  Google Scholar 

  • Stenzel K, Andersch WD (1992) Schneckenbekämpfungsmittel. European Patent No. 92115697.2.

  • Suh S-Q, Blackwell M (1999) Molecular phylogeny of the cleistothecial fungi placed in Cephalothecaceae and Pseudeurotiaceae. — Mycologia 91: 836–848.

    CAS  Google Scholar 

  • Sung GH, Spatafora JW, Zare R, Hodge KT, Gams W (2001) A revision of Verticillium sect. Prostrata. II. Phylogenetic analyses of SSU and LSU nuclear rDNA sequences from anamorphs and teleomorphs of the Clavicipitaceae. — Nova Hedwigia 72: 311–328.

    Google Scholar 

  • Tanaka Y, Shiomi K, Kamei K, Hagino M-S, Enomoto Y, Fang F, Yamaguchi Y, Masuma R, Zhang CG, Zhang XW, Omura S (1998) Antimalarial activity of radicicol, heptelidic acid and other fungal metabolites. — Journal of Antibiotics 51: 153–160.

    CAS  PubMed  Google Scholar 

  • Taylor JW, Jacobson DJ, Kroken S, Kasuga T, Geiser DM, Hibbett DS, Fischer MC (2000) Phylogenetic species recognition and species concept in fungi. — Fungal Genetics and Biology 31: 21–32.

    Article  CAS  PubMed  Google Scholar 

  • Thirumalachar MJ (1972) Antiamoebin, an anthelmintic and antiprotozoal antibiotic, and method for producing the same. U.S. Patent No. 3.657,419.

  • Toki S, Ando K, Kawamoto I, Sano H, Yoshida M, Matsuda Y (1992) ES-242-2,-3,-4,-5,-6,-7, and-8, novel bioxanthracenes produced by Verticillium sp., which act on the N-Methyl-D-aspartate receptor. — Journal of Antibiotics 45: 1047–1054.

    CAS  PubMed  Google Scholar 

  • Turner WB, Aldridge DC (1983) Fungal metabolites II, chapter 5, pp. 173–177. Academic Press London/New York.

    Google Scholar 

  • Tuthill DE, Frisvad JC, Christensen M (2001) Systematics of Penicillium simplicissimum based on rDNA sequences, morphology and secondary metabolites. — Mycologia 93: 298–308.

    CAS  Google Scholar 

  • Van Zaayen A, Gams W (1982) Contribution to the taxonomy and pathogenicity of fungicolous Verticillium species. II. Pathogenicity. — Netherlands Journal of Plant Pathology 88: 143–154.

    Google Scholar 

  • Wainwright M, Betts RP, Teale DM (1986) Antibiotic activity of oosporein from Verticillium psalliotae. — Transactions of the British Mycological Society 86: 168–170.

    Google Scholar 

  • Wenke J, Anke H, Sterner O (1993) Pseurotin A and 8-O-demethylpseurotin A from Aspergillus fumigatus and their inhibitory effects on chitin synthase. — Biosciences Biotechnology and Biochemistry 57: 961–964.

    CAS  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand, DH, Sninsky JJ, White TJ (eds) PCR Protocols: A guide to methods and applications, pp. 315–322. Academic Press, San Diego, USA.

    Google Scholar 

  • Wicklow DT, Joshi BK, Gamble WR, Gloer JB, Dowd PF (1998) Antifungal metabolites from Humicola fuscoatra Traaen NRRL 22980, a mycoparasite of Aspergillus flavus sclerotia. — Applied and Environmental Microbiology 64: 4482–4884.

    CAS  PubMed  Google Scholar 

  • Wink JD, Grabley SD, Gareis MD, Zeeck APD, Philipps SD (1992): Biologically active pseurotin A and D, new metabolites from Aspergillus fumigatus, process for their preparation and their use as apomorphine antagonists. European Patent No. EP546475-A.

  • Zao A, Lee SH, Mojena M, Jenkins RG, Patrick DR, Huber HE, Goetz MA, Hensens OD, Zink DL, Vilella D, Dombrowski A, Lingham RB, Huan L (1999) Resorcylic acid lactones: Naturally occurring potent inhibitors of MEK. — Journal of Antibiotics 52: 1086–1094.

    Google Scholar 

  • Zare R, Gams W, Culham A (2000) A revision of Verticillium sect. Prostrata. I. Phylogenetic studies using ITS sequences. — Nova Hedwigia 71: 465–480.

    Google Scholar 

  • Zare R, Gams W (2001a) A revision of Verticillium sect. Prostrata. IV. The genus Lecanicillium and Simplicillium gen. nov. — Nova Hedwigia 73: 1–50.

    Google Scholar 

  • Zare R, Gams W (2001b): A revision of Verticillium sect. Prostrata. VI. The genus Haptocillium. — Nova Hedwigia 73: 271–292.

    Google Scholar 

  • Zare R, Gams W, Evans HC (2001): A revision of Verticillium sect. Prostrata. V. The genus Pochonia, with notes on Rotiferophthora. — Nova Hedwigia 73: 51–86.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Stadler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stadler, M., Tichy, HV., Katsiou, E. et al. Chemotaxonomy of Pochonia and other conidial fungi with Verticillium-like anamorphs. Mycol Progress 2, 95–122 (2003). https://doi.org/10.1007/s11557-006-0048-1

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11557-006-0048-1

Keywords

Navigation