Skip to main content
Log in

Trichoderma populations from alkaline agricultural soil in the Nile valley, Egypt, consist of only two species

  • Published:
Mycological Progress Aims and scope Submit manuscript

Abstract

The biodiversity of Trichoderma was studied in the Northern half of the Nile valley in Egypt. 20 strains were isolated from 9 different geographic locations, representing 19 different habitats, all with a pH between 7.3 and 8.4. Only T. harzianum (three ITS1/2 haplotypes and three RAPD-genotypes) and the anamorph of Hypocrea orientalis were found. One of the T. harzianum haplotypes (4 strains) is new. The occurrence of T. harzianum haplotypes and of H. orientalis appeared to be essentially independent of the habitat (pH, plant, soil type), and also did not correlate with biochemical properties (cellulase and chitinase activity) of the individual strains. These two taxa seem to be indigenous to the Nile valley, their presence not being influenced by the agricultural history of the soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Refferences

  • Caetan-Anolles G, Bassam B, Gresshoff PM (1992) Primer template interactions during DNA amplification fingerprinting with single arbitrary oligonucleotides. — Molecular and General Genetics 235: 121–127.

    Google Scholar 

  • Chaverri P, Castlebury LA, Samuels GJ, Geiser DM (2003) Multilocus phylogenetic structure within the Trichoderma harzianum/Hypocrea lixii complex. — Molecular Phylogenetics and Evololution 27: 302–313.

    CAS  Google Scholar 

  • Cumagun CJR, Hockenhull J, Lübeck M (2000): Characterization of Trichoderma isolates from Philippine rice fields by UP-PCR and rDNA-ITS1 analysis-identification of UP-PCR markers. — Journal of Phytopathology 148: 109–115.

    Article  CAS  Google Scholar 

  • Danielson R, Davey C (1973) The abundance of Trichoderma propagules and the distribution of species in forest soils. — Soil Biology and Biochemistry 5: 485–494.

    Google Scholar 

  • Esposito E, Da Silva M (1998) Systematics and environmental application of the genus Trichoderma. — CRC Critical Reviews in Microbiology 24: 89–98.

    CAS  PubMed  Google Scholar 

  • Hamdan G (1961) Evaluation of Egyptian agriculture in Egypt. In: History of land use in arid regions, UNESCO, Paris: 119–142.

    Google Scholar 

  • Hjeljord L, Tronsmo A (1998) Trichoderma and Gliocladium in biological control: an overview. In: Harman, G.E. and Kubicek, C.P., (eds.) Trichoderma and Gliocladium. Enzymes, biological control and commercial applications. pp. 131–151. Taylor and Francis Ltd. London, UK.

    Google Scholar 

  • Jackson ML (1958) Soil chemical analysis. Constable and Co. London, UK

    Google Scholar 

  • Johnson LF, Curl EA, Bond JH, Fribourg HA (1959) Methods for studying soil microflora-plant disease relationships. Burgess Publishing Co., Minneapolis, MN. 178 p.

    Google Scholar 

  • Kimura M (1981) Estimation of evolutionary distances between homologous nucleotide sequences. — Proceedings of the National Academy of Sciences USA 78: 454–458.

    CAS  Google Scholar 

  • Kindermann J, El-Ayouti Y, Samuels GJ, Kubicek CP (1998) Phylogeny of the genus Trichoderma based on sequence analysis of the internal transcribed spacer region 1 of the rDNA clade. — Fungal Genetics and Biology 24: 298–309.

    Article  CAS  PubMed  Google Scholar 

  • Klein D, Eveleigh DE (1998) Ecology of Trichoderma. In: C.P. Kubicek. and G.E. Harman, (eds.) Trichoderma and GliocladiumBasic biology, taxonomy abnd genetics. pp. 57–73. Taylor & Francis Ltd. London, UK.

    Google Scholar 

  • Kredics L, Antal ZS, Manczinger L, Szekeres A, Kevei F, Nagy E (2003) Influence of environmental parameters on Trichoderma strains with biocontrol potential. — Food Technology and Biotechnology 41: 37–42.

    Google Scholar 

  • Kubicek CP, Penttilä ME (1998) Regulation of production of plant polysaccharide degrading enzymes by Trichoderma. In: Harman, G.E. and Kubicek, C.P. (eds.) Trichoderma and Gliocladium. Enzymes, biological control and commercial applications. pp. 49–71. Taylor & Francis Ltd. London, UK.

    Google Scholar 

  • Kubicek CP, Mach RL, Peterbauer CK, Lorito M (2001) Trichoderma: from genes to biocontrol. — Journal of Plant Pathology 83: 11–23.

    CAS  Google Scholar 

  • Kubicek CP, Bissett J, Druzhinina I, Kullnig-Gradinger C, Szakacs G (2003) Genetic and metabolic diversity of Trichoderma: a case study on South East Asian isolates. — Fungal Genetics and Biology 38: 310–319.

    Article  CAS  PubMed  Google Scholar 

  • Kullnig CM, Szakacs G, Kubicek CP (2000) Molecular identification of Trichoderma species from Russia, Siberia and the Himalaya. — Mycological Research 104: 1117–1125.

    Article  CAS  Google Scholar 

  • Kullnig-Gradinger CM, Szakacs G, Kubicek CP (2002) Phylogeny and evolution of the fungal genus Trichoderma — a multigene approach. — Mycological Research 106: 757–767.

    Article  CAS  Google Scholar 

  • Lieckfeldt E, Kullnig CM, Kubicek CP, Samuels GJ, Börner T (2001) Trichoderma aureoviride: phylogenetic position and characterization. — Mycological Research 105: 313–322.

    Article  CAS  Google Scholar 

  • Lieckfeldt E, Samuels GJ, Börner T, Gams W (1998) Trichoderma koningii: neotypification and Hypocrea teleomorph. — Canadian Journal of Botany 76: 1507–1522.

    Article  Google Scholar 

  • Lopandic K, Prillinger H, Molnar O, Giménez-Jurado G (1996) Molecular characterization and genotypic identification of Metschnikowia species. — Systematic and Applied Microbiology 19: 393–402.

    Google Scholar 

  • Mazen MB, Shaban GM (1983) Seasonal fluctuation of non-rhizosphere soil fungal in wheat field in Egypt. — Qtar University, Science Bulletin 3: 115–129.

    Google Scholar 

  • Messner R, Schweigkofler W, Ibl M, Berg G, Prillinger H (1996) Molecular characterization of the plant pathogen Verticillium dahliae Kleb. using RAPD-PCR and sequencing of the 18S rRNA gene. — Journal of Phytopathology 144: 347–354.

    Google Scholar 

  • Meyer W, Koch A, Niemann B, Epplen JT, Börner T (1991) Differentiation of species and strains among filamentous fungi by DNA fingerprinting. — Current Genetetics 19: 239–242.

    CAS  Google Scholar 

  • Middendorf LR, Bruce JC, Bruce RC, Eckles RD, Grone DL, Roeme SC, Sloniker GD, Steffens DL, Sutter SL, Brumbaugh JA, Patonay G (1992) Continuous, on-line DNA sequencing using a versatile infrared laser scanner/electrophoresis apparatus. Electrophoresis 13, 487–494.

    Article  CAS  PubMed  Google Scholar 

  • Moubasher AH, Abdel-Hafez SII (1987) Studies on the mycoflora of Egyptian soils. — Mycopathologia 63: 3–10.

    Google Scholar 

  • Nei M, Li WH (1979) Mathematical model for studying genetic variation in terms of restriction nucleases. — Proceedings of the National Academy of Sciences USA 76: 5269–5273.

    CAS  Google Scholar 

  • Nelson EE (1982) Occurrence of Trichoderma in a Douglas-fire soil. — Mycologia 74: 280–284.

    Google Scholar 

  • Nicholas KB, Nicholas HB (1997) GeneDoc: a tool for editing multiple sequence alignments. Free software.

  • Norusis MJ (1993). SPSS for Windows, Professional Statistics, Release 6.0. SPSS Inc., Chicago

    Google Scholar 

  • Papavizas GC, Lumsden RD (1982) Improved medium for isolation of Trichoderma spp. from soil. Plant Disease 66: 1019–1020.

    Google Scholar 

  • Peterbauer CK, Heidenreich E, Baker RT, Kubicek CP (1992) Effect of benomyl and benomyl-resistance on cellulase formation by Trichoderma reesei and Trichoderma harzianum. — Canadian Journal of Microbiology 38: 1292–1297

    CAS  Google Scholar 

  • Piper CG (1955): Soil and plant analysis. A laboratory manual of method, for the examination of soil and determination of the inorganic substituents of plants. International Publishers Inc. New York

    Google Scholar 

  • Põldmaa K (2000) Generic delimitation of the fungicolous Hypocreaceae. — Studies in Mycology 45: 83–94.

    Google Scholar 

  • Reissing JL, Strominger JL, Leloir LF (1955): A modified colorimetric method for the estimation of N-acetylamino sugars. — Journal of Biological Chemistry 217: 959–966.

    Google Scholar 

  • Rifai MA (1969): A revision of the genus Trichoderma. — Mycological Papers 116: 1–56.

    Google Scholar 

  • Said R (1993) The Revier Nile. Geology, hydrology and utilization. Pergamon Press

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular Cloning: a Laboratory manual, 2nd. edition. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  • Samuels GJ (1996) Trichoderma: a review of biology and systematics of the genus. — Mycological Research 100: 923–935.

    Google Scholar 

  • Samuels GJ, Petrini O, Kuhls K, Lieckfeldt E, Kubicek CP (1998) The Hypocrea schweinitzii complex and Trichoderma sect. Longibrachiatum. — Mycology 41: 1–54.

    Google Scholar 

  • Shimodaira H, Hasegawa H (1999) Multiple comparisons of log-likelihoods with applications to phylogenetic interference. — Molecular Biology and Evolution 16: 1114–1116

    CAS  Google Scholar 

  • Sivasithamparam K, Ghisalberti EL (1998) Secondary metabolism in Trichoderma and Gliocladium. In: Kubicek, C.P. and Harman, G.E. (eds.) Trichoderma and Gliocladium. Basic biology, taxonomy and genetics. pp. 139–191. Taylor & Francis Ltd. London, UK.

    Google Scholar 

  • Somogi M (1953) A new reagent for the determination o sugars. — Journal of Biological Chemistry 160: 62–68.

    Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. — Nucleic Acids Research 24: 4876–4882.

    Google Scholar 

  • Turner D, Kovacs W, Kuhls K, Lieckfeldt E, Peter B, Arisan-Atac I, Strauss J, Samuels GJ, Börner T, Kubicek CP (1997) Biogeography and phenotypic variation in Trichoderma sect. Longibrachiatum and associated Hypocrea species. — Mycological Research 101: 449–459.

    Article  CAS  Google Scholar 

  • Waterman MS (1986) Multiple sequence alignment by consensus. — Nucleic Acid Research 14: 9095–9102.

    CAS  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand, DH, Sninsky JJ, White TJ (eds.) PCR protocols. A guide to methods and applications. Academic Press, San Diego, CA. pp. 315–322.

    Google Scholar 

  • Widden P, Abitbol JJ (1980) Seasonality of Trichoderma species in a spruce-forest soil. — Mycologia 72: 775–784.

    Google Scholar 

  • Wuczskowski M, Druzhinina I, Gherbawy Y, Klug B, Prillinger HJ, Kubicek CP (2003) Taxon pattern and genetic diversity of Trichoderma in a mid-European, primeval floodplain-forest. — Microbiological Research 158: 125–134.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian P. Kubicek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gherbawy, Y., Druzhinina, I., Shaban, G.M. et al. Trichoderma populations from alkaline agricultural soil in the Nile valley, Egypt, consist of only two species. Mycol Progress 3, 211–218 (2004). https://doi.org/10.1007/s11557-006-0091-y

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11557-006-0091-y

Keywords

Navigation