Skip to main content

Advertisement

Log in

Species richness and substrate specificity of lignicolous fungi in the canopy of a temperate, mixed deciduous forest

  • Published:
Mycological Progress Aims and scope Submit manuscript

Abstract

In the more than twenty years in which long-term canopy research has been conducted, mycology has been largely disregarded. Our studies using a construction crane to gain access to the canopy of a forest in Leipzig, Germany are the first long term investigations assessing the diversity and ecology of wood-decaying fungi in a canopy. Thirty-seven individuals of nine different tree species with a large amount of dead wood were selected. Sampling focussed on the four most prominent tree species Acer pseudoplatanus, Fraxinus excelsior, Quercus robur and Tilia cordata. In the years 2002 and 2003 dead wood was collected in different canopy strata. Dead branches were removed and stored for two weeks in open boxes with high humidity to allow growth of fructifications in the laboratory. 118 different taxa were identified (108 species, 77 genera). Corticioid fungi (e.g., of Corticiaceae, Stereaceae, Hymenochaetaceae) dominated the fungal composition with 37 species, pyrenomycetes were present with 18 species. Agaric fungi (Agaricales and Cortinariales) were scarce. Species with minute basidiomes dominated the fungal composition of this systematic group. Agarics with larger sporomes were found only once and were restricted to strongly decayed branches in shaded canopy areas. Concerning species richness and fungal composition the four tree species mentioned above differed remarkably. As expected, many fungi that grew on bark or slightly decayed wood showed a distinct host and substratum specifity. It is noteworthy that fungi which are purportedly to be non-specific were found on single tree species only.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anhuf D, Rollenbeck R (2001) Canopy structure of the Rio Surumoni rain forest (Venezuela) and its influence on microclimate. — Ecotropica 7: 21–32.

    Google Scholar 

  • Baral HO, Baral O, Marson G (2003) In Vivo Veritas. 2nd edition. 2 CDs. Tübingen

  • Bellot J, Cvila A, Rodrigo A (1999) Throughfall and Stemflow. — Ecological Studies 137: 209–222.

    Google Scholar 

  • Bewley JD (1979) Physiological Aspects of Desiccation Tolerance. — Annual Reviews of Plant Physiology 30: 195–238.

    CAS  Google Scholar 

  • Boddy L, Rayner ADM (1982) Ecological roles of basidiomycetes forming decay communities in attached oak branches. — New Phytologist 93: 77–88.

    Google Scholar 

  • Boddy L, Rayner ADM (1983) Origins of decay in living deciduous trees: the role of moisture content and a re-appraisal of the expanded concept of tree decay.“ — New Phytologist 94: 623–641.

    Google Scholar 

  • Boddy L, Rayner ADM (1984) Fungi inhabiting oak twigs before and at fall. — Transactions of the British Mycological Society 82: 501–505.

    Google Scholar 

  • Boddy L (1992) Development and function of fungal fommunities in decomposing wood. In Carroll GC, Wicklow DT (eds) The fungal community, it’s organization and role in the ecosystem. 2nd edition: 749–782. Marcel Dekker Inc., New York, USA.

    Google Scholar 

  • Butin H, Kowalski T (1983) The natural pruning of branches and their biological conditions. II. The fungal flora of english oak (Quercus robur L.). — European Journal of Forest Pathology 13: 428–439.

    Google Scholar 

  • Chamuris GP (1991) Speciation in the Peniophora cinerea complex. — Mycologia 83: 736–742.

    Google Scholar 

  • Chapela IH, Boddy L (1988 a) Fungal colonization of attached beech branches I. Early stages of development of fungal communities. — New Phytologist 110: 39–45.

    Google Scholar 

  • Chapela IH, Boddy L (1988 b) Fungal colonization of attached beech branches II. Spatial and temporal organization of communities arising from latent invaders in bark and functional sapwood, under different moisture regimes. — New Phytologist 110: 47–57.

    Google Scholar 

  • Chapela IH, Boddy L (1988 c) The fate of early fungal colonizers in beech branches decomposing on the forest floor. — FEMS Microbiology Ecology 53: 273–284.

    Google Scholar 

  • Colwell RK (2000) EstimateS: Statistical estimation of species richness and shared species from samples. Version 6.0b1 Beta. User’s guide and application (http://viceroy.eeb.uconn.edu/estimates)

  • Colwell RK, Coddington JA (1995) Estimating terrestrial biodiversity through extrapolation. In Hawksworth DL (ed) Biodiversity — Measurement and estimation: 101–118. Chapman & Hall, London, Weinheim, New York, Tokyo, Melbourne, Madras.

    Google Scholar 

  • Dufrène M, Legendre P (1997) Species assemblages and indicator species: the need for a flexible asymmetrical approach. — Ecological Monographs 67: 345–366.

    Google Scholar 

  • Erwin TL (1982) Tropical forests: Their richness in Coleoptera and other arthropod species. — The Coleopterists Bulletin 36: 74–75.

    Google Scholar 

  • Erwin TL (1988) The tropical forest canopy. The heart of biotic diversity. In Wilson EO (ed) Biodiversity: 123–129. National Academy Press, Washington, USA.

    Google Scholar 

  • Erwin TL, Scott JC (1980) Seasonal and size patterns, trophic structure, and richness of Coleoptera in the tropical arboreal ecosystem: the fauna of the tree Luehea seemannii Triana and Planch in the canal zone of Panama. — The Coleopterists Bulletin 34: 305–322.

    Google Scholar 

  • Gauch, Jr HG (1982) Multivariate analysis in community ecology. In Beck E, Birks HJE, Connor EF (eds) Cambridge studies in ecology. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Griffith GS, Boddy L (1988) Fungal communities in attached ash (Fraxinus excelsior) twigs. — Transactions of the British Mycological Society 91: 599–606.

    Google Scholar 

  • Griffith GS, Boddy L (1989). Fungal decomposition of attached angiosperm twigs I. Decay community development in ash, beech and oak. — New Phytologist 116: 407–415.

    Google Scholar 

  • Griffith GS, Boddy L (1991) Fungal decomposition of attached angiosperm twigs II. Moisture relations of twigs of ash (F. excelsior L.). — New Phytologist 117: 251–257.

    Google Scholar 

  • Hallenberg N (1991) Speciation and distribution in Corticiaceae (Basidiomycetes). — Plant Systematics and Evolution 177: 93–110.

    Article  Google Scholar 

  • Hallenberg N, Parmasto E (1998) Phylogenetic studies in species of Corticiaceae growing on branches. — Mycologia 90: 640–654.

    Google Scholar 

  • Hallenberg N, Larsson E (1991) Differences in cultural characters and electrophoretic patterns among sibling species in four different species complexes (Corticiaceae, Basidiomycetes) — Mycologia 83: 131–141.

    Google Scholar 

  • Hallenberg N, Larsson E (1992) Mating Biology in Peniophora cinerea (Basidiomycetes). — Canadian Journal of Botany 70: 1758–1764.

    Google Scholar 

  • Hallenberg N, Larsson K-H, Larsson E (1994) On the Hyphoderma praetermissum complex. — Mycological Research 98: 1012–1018.

    Google Scholar 

  • Hawksworth DL (2001) The magnitude of fungal diversity: the 1.5 million species estimate revisited. — Mycological Research 105: 1422–1432.

    Google Scholar 

  • Hawksworth DL, Kalin-Arroyo MT, Hammond PM, Ricklefs RE, Cowling RM, Samways MJ (1995) Magnitude and distribution of biodiversity. In Heywood VH, Gardener K (eds) Global Biodiversity Assessment: 107–191. Cambridge University Press for UNEP, Cambridge, UK.

    Google Scholar 

  • Hedger J, Lewis P, Gitay H (1993) Litter-trapping by fungi in moist tropical forests. In Isaac S, Frankland JC, Watling R, Whalley AJS (eds) Aspects of tropical mycology: 15–35. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Høiland K, Bendiksen E (1996) Biodiversity of wood-inhabiting fungi in a boreal coniferous forest in Sør-Trøndelag County, Central Norway. — Nordic Journal of Botany 16: 643–659.

    Google Scholar 

  • Hong Q, Klinka K, Song X (1999). Cryptogams on decaying wood in old-growth forests of southern coastal British Columbia. — Journal of Vegetation Science 10: 883–894.

    Google Scholar 

  • Horchler P (2004) Strahlungsmessung als Grundlage für eine vertikale Gliederung des Waldes. In Horchler P, Morawetz W (eds) Projekt Leipziger Auwaldkran. Workshop und Vortragsveranstaltung — Neue Ergebnisse und weitere Projektplanung 23. März 2004: 15–17. available from: unterseher@ uni-leipzig.de

  • Ingold CT (1954) Fungi and Water. — Transactions of the British Mycological Society 37: 98–107.

    Google Scholar 

  • Kirk PM, Cannon PF, David JC, Stalpers JA (2001) Ainsworth & Brisby’s Dictionary of the Fungi. 9th edititon. CABI Publishing, UK

    Google Scholar 

  • Küffer N, Hallenberg N (2000) Intraspecific variability in Peniophora aurantiaca (Basidiomycetes). — Nordic Journal of Botany 20: 713–716.

    Google Scholar 

  • Lindblad I (1997) Wood-inhabiting fungi on fallen logs of Norway spruce: Relations to forest management and substrate quality. — Nordic Journal of Botany 18: 243–255.

    Google Scholar 

  • Lodge DJ, Cantrell S (1995) Fungal communities in wet tropical forests: Variation in time and space. — Canadian Journal of Botany 73: S1391–S1398.

    Google Scholar 

  • Lowman MD, Moffett M (1993). The ecology of tropical rain forest canopies. — Tree 8: 104–107.

    Google Scholar 

  • Lumley TC, Gigna CLD, Currah RS (2001) Microfungus communities of white spruce and trembling aspen logs at different stages of decay in disturbed and undisturbed sites in the boreal mixedwood region of Alberta. — Canadian Journal of Botany 79: 76–92.

    Article  Google Scholar 

  • Malloch D, Blackwell M (1992) Dispersal of fungal diaspores. In Carroll GC, Wicklow DT (eds) The fungal community, it’s organization and role in the ecosystem. 2nd edition: 147–171. Marcel Dekker Inc., NY, USA.

    Google Scholar 

  • Mc Cune B, Mefford J (1999) PC-ORD. Multivariate Analysis of Ecological Data. Version 4.0. MjM Software, Gleneden Beach, Oregon, USA.

    Google Scholar 

  • Mc Cune B, Grace B (2002) Analysis of ecological communities. MJM Software Design, Gleneden Beach, Oregon, USA.

    Google Scholar 

  • Mitchell AW, Secoy K, Jackson T (2002) The Global Canopy Handbook. Techniques of access and study in the forest roof. Global Canopy Programme, Oxford, UK.

    Google Scholar 

  • Morawetz W (1998) The Surumoni Project: The botanical approach toward gaining an interdisciplinary understanding of the functions of the rain forest canopy. In Barthlott W, Winiger M (eds) Biodiversity — A challenge for development research and policy: 71–80. Springer Verlag, Berlin, Germany.

    Google Scholar 

  • Morawetz W, Horchler P (2004) Leipzig Canopy Crane Project (LAK), Germany. In Basset Y, Horlyck V, Wright J (eds) Studying Forest Canopies from Above: The International Canopy Crane Network: 79–85. Smithsonian Tropical Research Institute, Panama, United Nations Environmental Programme

    Google Scholar 

  • Munk A (1957) Danish pyrenomycetes-a preliminary flora. Ejnar Munksgaard, Copenhagen, Danmark.

    Google Scholar 

  • Nadkarni NM (2002) In Mitchell AW, Secoy K, Jackson T (eds) The global canopy handbook. Techniques of access and study in the forest roof: 7. Global Canopy Programme, Oxford, UK.

    Google Scholar 

  • Nilsson RH, Hallenberg N, Nordén B, Maekawan, Wu S-H (2003) Phylogeography of Hyphoderma setigerum (Basidiomycota) in the northern hemisphere. — Mycological Research 107: 645–652.

    Article  CAS  PubMed  Google Scholar 

  • Nuñez M (1996) Hangin in the air: a tough skin for a tough life. — The Mycologist 10: 15–17.

    Google Scholar 

  • Nuñez M, Ryvarden L (1993) Basidiomycetes on twigs at ground level and in the canopy: a comparison. In Isaac S, Frankland JC, Watling R, Whalley AJS (eds) Aspects of tropical mycology: 307. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Otto P, Glowka B (1998) Über die vertikale Verteilung xylophager Macromyceten an toten stehenden Bäumen in einem Tieflandregenwald am oberen Orinoco. In Dalitz H, Haverkamp M, Homeier J, Breckle S-W (eds) Bielefelder Ökologische Beiträge. Band 12. Kurzbeiträge zur Tropenökologie: 132.

  • Ozanne CM, Anhuf PD, Boulter SL, Keller M, Kitching RL, Körner C, Meinzer FC, Mitchell AW, Nakashizuka T, Dias PLS, Stork NE, Wright SJ, Yoshimura M (2003) Biodiversity meets the atmosphere: a global view of forest canopies. — Science 301: 183–186.

    Article  CAS  PubMed  Google Scholar 

  • Pearce RB (1996) Antimicrobial defences in the wood of living trees. — New Phytologist 132: 203–233.

    CAS  Google Scholar 

  • Perry DR (1978) A method of access into the crowns of emergent and canopy trees. Biotropica 10: 155–157.

    Google Scholar 

  • Ryvarden L, Nuñez M (1992) Basidiomycetes in the canopy of an African rain forest. In Hallé F & Pascal O (eds.) Biologie d’une canopée de fôret équatoriale. Commun., Lyon: 116–118.

  • Sherwood, MA (1981) Convergent evolution in discomycetes from bark and wood. — Botanical Journal of the Linnean Society 82: 15–34.

    Google Scholar 

  • Sutton Sl, Ash CP, Grundy A (1983) The vertical distribution of flying insects in the lowland rain forest of Panama, Papua New Guinea and Brunei. — Zoological Journal of the Linnean Society 78: 287–297.

    Google Scholar 

  • Tejera EB, Rodríguez-Armas JL (1999) Aphyllophorales (Basidiomycotina) of arid habitats of the Canary Islands. Preliminary data. — Mycotaxon 70: 111–125.

    Google Scholar 

  • Ter Braak CJF, Smillauer P (2002) Canoco Reference Manual and User’s Guide to Canoco for Windows. Software for Canonical Community Ordination (version 4). Microcomputer Power, Ithaca, NY, USA

    Google Scholar 

  • Unterseher M, Otto P, Morawetz W (2003) Studien zur Diversität lignicoler Pilze im Kronenraum des Leipziger Auwaldes (Sachsen). — Boletus 26: 117–126.

    Google Scholar 

  • Wilson D (1993) Fungal endophytes: out of sight but schould not be out of mind. — Oikos 68: 379–384.

    Google Scholar 

  • Wilson D (1995) Endophyte-the evolution of a term, and clarification of its use and definition. — Oikos 73: 274–276.

    Google Scholar 

  • Winterhoff W (2001) Die Großpilz-Fruchtkörper-Sukzession auf toten Kiefern im Bannwald „Franzosenbusch“. — Freiburger Forstliche Forschung Heft 29: 126–147.

    Google Scholar 

  • Wright SJ (2002) Fort Sherman and Parque Metropolitano canopy cranes, Panama. In Mitchell AW, Secoy K, Jackson T (eds) The global canopy handbook. Techniques of access and study in the forest roof: 72–76. Global Canopy Programme, Oxford, UK.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Unterseher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Unterseher, M., Otto, P. & Morawetz, W. Species richness and substrate specificity of lignicolous fungi in the canopy of a temperate, mixed deciduous forest. Mycol Progress 4, 117–132 (2005). https://doi.org/10.1007/s11557-006-0115-7

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11557-006-0115-7

Keywords

Navigation