Skip to main content
Log in

Sums of products of Ramanujan sums

  • Published:
ANNALI DELL'UNIVERSITA' DI FERRARA Aims and scope Submit manuscript

Abstract

The Ramanujan sum c n (k) is defined as the sum of k-th powers of the primitive n-th roots of unity. We investigate arithmetic functions of r variables defined as certain sums of the products \({c_{m_1}(g_1(k))\cdots c_{m_r}(g_r(k))}\), where g 1, . . . , g r are polynomials with integer coefficients. A modified orthogonality relation of the Ramanujan sums is also derived.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Apostol T.M.: Introduction to Analytic Number Theory. Springer, Berlin (1976)

    MATH  Google Scholar 

  2. Cohen E.: Representations of even functions (mod r), II. Cauchy products. Duke Math. J. 26, 165–182 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  3. Liskovets V.A.: A multivariate arithmetic function of combinatorial and topological significance. Integers 10(#A12), 155–177 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Lucht L.G.: A survey of Ramanujan expansions. Int. J. Number Theory 6, 1785–1799 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. McCarthy P.J.: Introduction to Arithmetical Functions, Universitext. Springer, Berlin (1986)

    Book  Google Scholar 

  6. Nathanson M.B.: Additive Number Theory. The Classical Bases, Graduate Texts in Mathematics, vol. 164. Springer, Berlin (1996)

    Google Scholar 

  7. Niven I., Zuckerman H.S., Montgomery H.L.: An Introduction to the Theory of Numbers, 5th edn. Wiley, New York (1991)

    Google Scholar 

  8. Ore Ø.: Number Theory and Its History. Dover, USA (1988)

    MATH  Google Scholar 

  9. Ramanujan, S.: On certain trigonometrical sums and their applications in the theory of numbers. Trans. Cambridge Philos. Soc. 22, 259–276 (1918) (collected Papers, Cambridge 1927, No. 21)

  10. Schwarz W., Spilker J.: Arithmetical Functions, London Mathematical Society Lecture Note Series, vol. 184. Cambridge University Press, Cambridge (1994)

    Google Scholar 

  11. Sivaramakrishnan, R.: Classical theory of arithmetic functions. In: Monographs and Textbooks in Pure and Applied Mathematics, vol. 126. Marcel Dekker, USA (1989)

  12. Tóth, L.: Some remarks on a paper of V. A. Liskovets. Integers 11(#A51) (2011)

  13. Tóth L.: Menon’s identity and arithmetical sums representing functions of several variables. Rend. Semin. Mat. Univ. Politec. Torino 69, 97–110 (2011)

    MathSciNet  MATH  Google Scholar 

  14. Tóth L., Haukkanen P.: The discrete Fourier transform of r-even functions. Acta Univ. Sapientiae Mathematica 3(1), 5–25 (2011)

    MATH  Google Scholar 

  15. Vaidyanathaswamy R.: The theory of multiplicative arithmetic functions. Trans. Am. Math. Soc. 33, 579–662 (1931)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to László Tóth.

Additional information

The author gratefully acknowledges support from the Austrian Science Fund (FWF) under the project Nr. P20847-N18.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tóth, L. Sums of products of Ramanujan sums. Ann Univ Ferrara 58, 183–197 (2012). https://doi.org/10.1007/s11565-011-0143-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11565-011-0143-3

Keywords

Mathematics Subject Classification (2000)

Navigation