Skip to main content
Log in

Gelatin-based protonic electrolyte for electrochromic windows

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Proton-conducting gel polymer electrolytes based on gelatin plasticized with glycerol and containing acetic acid were investigated, characterized, and applied to electrochromic window. For glycerol contents varying from 7% to 48%, the conductivity of the uniform and predominantly amorphous gel electrolyte was found to follow a Vogel–Tamman–Fulcher behavior with the temperature. Typically, for the electrolyte chosen to make 7 × 2 cm2 electrochromic smart window with the configuration: glass/fluor-doped tin oxide (FTO)/WO3/gelatin electrolyte/CeO2–TiO2/FTO/glass and containing 28% of glycerol, the conductivities were found to be of the order of 5 × 10−5 S/cm at room temperature and 3.6 × 10−4 S/cm at 80 °C. The device was characterized by spectroelectrochemical techniques and was tested up to 10,000 cycles showing a fast coloring/bleaching behavior, where the coloring process was achieved in 10 s and the bleaching in 2 s. The transmission variation at the wavelength of 550 nm was about 15%. The cyclic voltammograms showed a very good reversibility of the cathodic/anodic processes, and the charge density was about 3.5 mC/cm2. The memory tests showed that the transmittance in the colored state increased by 8% in 90 min after removing the potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Lampert CM (1998) Sol Ener Mater Sol Cells 52:207–221

    Article  CAS  Google Scholar 

  2. Rosseinsky D, Mortimer RJ (2001) Adv Mater 13:783–793

    Article  CAS  Google Scholar 

  3. Granqvist CG, Avendano E, Azens A (2003) Thin Solid Films 442:201–211

    Article  CAS  Google Scholar 

  4. Heusing S, Aegerter MA (2005) Sol-gel coatings for electrochromic devices. In: Sakka S (ed) Applications of sol–gel technology. Kluwer, Boston, p 719

    Google Scholar 

  5. O’Brien NA, Gordon J, Mathew H, Hichwa BP (1999) Thin Solid Films 345:312–318

    Article  Google Scholar 

  6. Silva MM, Barros SC, Smith MJ, MacCallum JR (2004) Electrochim Acta 49:1887–1891

    Article  CAS  Google Scholar 

  7. Barbosa PC, Silva MM, Smith MJ, Gonçalves A, Fortunato E, Nunes SC, de Zea Bermudez V (2009) Electrochim Acta 54:1002–1009

    Article  CAS  Google Scholar 

  8. Monk PMS, Mortimer RJ, Rosseinsky DR (1995) Electrochromism: fundamentals and applications. VCH, Weinheim

    Google Scholar 

  9. Fonseca CP, Rosas DS, Gaboardi F, Neves S (2006) J Power Sources 155:381–384

    CAS  Google Scholar 

  10. Nogueira VC, Longo C, Nogueira AF, Soto Oviedo MA, De Paoli MA (2006) J Photochem Photobiol A Chem 180:226–232

    Article  CAS  Google Scholar 

  11. MacCallum JA, Vincent CA (1987/1989) Polymer electrolyte review 1 and 2. Elsevier, London

    Google Scholar 

  12. Gray FM (1991) Solid polymer electrolytes, fundamentals and technological applications. VCH, New York

    Google Scholar 

  13. Tambelli CE, Donoso JP, Regiani AM, Pawlicka A, Gandini A, LeNest JF (2001) Electrochim Acta 46:1665–1672

    Article  CAS  Google Scholar 

  14. Machado G, Pawlicka A, Yonashiro M (2004) Nonlin Optics Quant Optics 32:141–148

    CAS  Google Scholar 

  15. Pawlicka A, Dragunski DC, Avellaneda CO (2002) Electrochromic devices with starch based solid polymeric electrolytes. In: Graja A, Bulka R, Kajzar F (eds) Molecular low dimensional and nanostructured materials for advanced applications. NATO ASI series. Kluwer Academic, Norwell, p 255

    Google Scholar 

  16. Dragunski DC, Pawlicka A (2001) Mat Res 4:77–81

    Article  CAS  Google Scholar 

  17. Pawlicka A, Danczuk M, Wieczorek W, Zygadlo-Monikowska E (2008) J Phys Chem A 112:8888

    Article  CAS  Google Scholar 

  18. Majid SR, Arof AK (2007) Physica B 390:209–215

    Article  CAS  Google Scholar 

  19. Vieira DF, Avellaneda CO, Pawlicka A (2007) Electrochim Acta 53:1404–1408

    Article  CAS  Google Scholar 

  20. Pawlicka A, Dragunski DC, Guimaraes KV, Avellaneda CO (2004) Mol Cryst Liq Cryst 416:105/[361]–112/[368]

    Article  CAS  Google Scholar 

  21. Costa RGF, Heusing S, Avellaneda CO, Aegerter M, Pawlicka A (2006) Mol Cryst Liq Cryst 447:363–371

    Article  CAS  Google Scholar 

  22. Avellaneda CO, Vieira DF, Al-Kahlout A, Heusing S, Leite ER, Pawlicka A, Aegerter MA (2008) Sol Energy Mat Sol Cells 92:228–233

    Article  CAS  Google Scholar 

  23. Schmidt H, Krug H, Merl N, Moses A, Judeinstein P, Berni A (1994) Electrochromic thin-film systems and components thereof. Patent WO 95/28663

  24. Munro B, Conrad P, Krämer S, Schmidt H, Zapp P (1998) Sol Energy Mat Sol Cells 54:131–137

    Article  CAS  Google Scholar 

  25. Vieira DF, Pawlicka A (2009) Electrochim Acta. doi:10.1016/j.electacta.2009.04.039

  26. MacDonald JR (1987) Impedance spectroscopy. Wiley, New York

    Google Scholar 

  27. Wang M, Qi L, Zhao F, Dong S (2005) J Power Sources 139:223–229

    Article  CAS  Google Scholar 

  28. Yahya MZA, Arof AK (2003) Eur Polym J 39:897–902

    Article  CAS  Google Scholar 

  29. Arof AK, Osman Z, Mornin NM, Kamarulzaman N, Ibrahim ZA, Muhamad MR (2001) J Mat Sci 36:791–793

    Article  CAS  Google Scholar 

  30. Ng LS, Mohamad AA (2006) J Power Sources 163:382–385

    Article  CAS  Google Scholar 

  31. Sobral PJA, Monterrey-Q ES, Habitante AMQB (2002) J Therm Anal Calorim 67:499–504

    Article  CAS  Google Scholar 

  32. Thomazine M, Carvalho RA, Sobral PIA (2005) J Food Sci 70:E173–E176

    Google Scholar 

  33. Singh KP, Singh RP, Gupta PN (1995) Solid State Ionics 78:223–229

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are indebted to FAPESP, CNPq, CAPES, and PROBAL for the financial support given to this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agnieszka Pawlicka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Al-Kahlout, A., Vieira, D., Avellaneda, C.O. et al. Gelatin-based protonic electrolyte for electrochromic windows. Ionics 16, 13–19 (2010). https://doi.org/10.1007/s11581-009-0367-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-009-0367-8

Keywords

Navigation