Skip to main content
Log in

PVC–PMMA composite electrospun membranes as polymer electrolytes for polymer lithium-ion batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Composite nanofibrous membranes based on poly (vinyl chloride) (PVC)–poly (methyl methacrylate) (PMMA) were prepared by electrospinning and then they were soaked in liquid electrolyte to form polymer electrolytes (PEs). The introduction of PMMA into the PVC matrix enhanced the compatibility between the polymer matrix and the liquid electrolyte. The composite nanofibrous membranes prepared by electrospinning involved a fully interconnected pore structure facilitating high electrolyte uptake and easy transport of ions. The ion conductivity of the PEs increased with the increase in PMMA content in the blend and the ion conductivity of the polymer electrolyte based on PVC–PMMA (5:5, w/w) blend was 1.36 × 10−3 S cm−1 at 25 °C. The polymer electrolyte based on PVC–PMMA (5:5, w/w) blend presented good electrochemical stability up to 5.0 V (vs. Li/Li+) and good interfacial stability with the lithium electrode. The promising results showed that nanofibrous PEs based on PVC–PMMA were of great potential application in polymer lithium-ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Tarascon JM, Armand M (2001) Nature 414:359–367

    Article  CAS  Google Scholar 

  2. Stephan AM, Nahm KS (2006) Polymer 47:5952–5964

    Article  CAS  Google Scholar 

  3. Rajendran S, Mahendran O, Kannan R (2002) Fuel 81:1077–1081

    Article  CAS  Google Scholar 

  4. Ahmad Z, Al-Awadi NA, Al-Sagheer F (2007) Polym Degrad Stabil 92:1025–1033

    Article  CAS  Google Scholar 

  5. Ramesh S, Winie T, Arof AK (2007) Eur Polym J 43:1963–1968

    Article  CAS  Google Scholar 

  6. Rajendran S, Babu RS, Sivakumar P (2008) J Membr Sci 315:67–73

    Article  CAS  Google Scholar 

  7. Vickraman P, Aravindan V, Selvambikai M, Shankarasubramanian N (2009) Ionics 15:433–437

    Article  CAS  Google Scholar 

  8. Cazzanelli E, Mariotto G, Appetecchi GB, Croce F, Scrosati B (1995) Electrochim Acta 140:2379–2382

    Article  Google Scholar 

  9. Nicotera I, Coppola L, Oliviero C, Castriota M, Cazzanelli E (2006) Solid State Ion 177:581–588

    Article  CAS  Google Scholar 

  10. Ding YH, Zhang P, Long ZL, Jiang Y, Xu F, Di W (2009) J Membr Sci 329:56–59

    Article  CAS  Google Scholar 

  11. Yee WA, Nguyen AC, Lee PS, Kotaki M, Liu Y, Tan BT, Mhaisalkar S, Lu XH (2008) Polymer 49:4196–4203

    Article  CAS  Google Scholar 

  12. Li X, Cheruvally G, Kim JK, Choi JW, Ahn JH, Kim KW, Ahn HJ (2007) J Power Sources 167:491–498

    Article  CAS  Google Scholar 

  13. Bansal D, Meyer B, Salomon M (2008) J Power Sources 178:848–851

    Article  CAS  Google Scholar 

  14. Kim JK, Manuel J, Chauhan GS, Ahn JH, Ryu HS (2010) Electrochim Acta 55:1366–1372

    Article  CAS  Google Scholar 

  15. Raghavan P, Zhao XH, Kim JK, Manuel J, Chauhan GS, Ahn JH, Nah C (2008) Electrochim Acta 54:228–234

    Article  CAS  Google Scholar 

  16. Xiao QZ, Li ZH, Gao DS, Zhang HL (2009) J Membr Sci 326:260–264

    Article  CAS  Google Scholar 

  17. Thirunakaran R, Renganathan NG, Sundaram V, Pitchumani S, Muniyandi N, Gangadharan R, Ramamoorthy P (1999) J Power Sources 81:752–758

    Article  Google Scholar 

  18. Ramesh S, Liew CW, Morris E, Durairaj R (2010) Thermochimi Acta 511:140–146

    Article  CAS  Google Scholar 

  19. Frenot A, Chronakis IS (2003) Curr Opin Colloid Interface Sci 8:64–75

    Article  CAS  Google Scholar 

  20. Manesh KM, Santhosh P, Gopalan A, Lee KP (2007) Anal Biochem 360:189–195

    Article  CAS  Google Scholar 

  21. Dong H, Nyame V, MacDiarmid AG, Jones WE (2004) J Polym Sci B: Polym Phys 42:3934–3942

    Article  CAS  Google Scholar 

  22. Kim JR, Choi SW, Jo SM, Lee WS, Kim BC (2004) Electrochim Acta 50:69–75

    Article  CAS  Google Scholar 

  23. Raghavan P, Zhao XH, Manuel J, Chauhan GS, Ahn JH, Ryub HS, Ahn HJ, Kim KW, Nah C (2010) Electrochim Acta 55:1347–1354

    Article  CAS  Google Scholar 

  24. Cao JH, Zhu BK, Xu YY (2006) J Membr Sci 266:446–453

    Article  Google Scholar 

  25. Cui ZY, Xu YY, Zhu LP, Wang JY, Xi ZY, Zhu BK (2008) J Membr Sci 325:957–963

    Article  CAS  Google Scholar 

  26. Gopalan AI, Santhosh P, Manesh KM, Nho JH, Kim SH, Hwang CG, Lee KP (2008) J Membr Sci 325:683–690

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was financially supported by the Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education item (Grant No. 09B101).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Cao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhong, Z., Cao, Q., Wang, X. et al. PVC–PMMA composite electrospun membranes as polymer electrolytes for polymer lithium-ion batteries. Ionics 18, 47–53 (2012). https://doi.org/10.1007/s11581-011-0615-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-011-0615-6

Keywords

Navigation