Skip to main content
Log in

Effect of nanochitosan on electrochemical, interfacial and thermal properties of composite solid polymer electrolytes

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

PEO-based solid polymer electrolyte films with various concentrations of nanochitosan as filler and LiCF3SO3 as salt were prepared by membrane hot-press technique. Nanochitosan was prepared from chitosan by conventional chemical cure method. The prepared composite membranes were characterized by FT-IR, XRD, thermal, SEM, AFM analyses, electrochemical impedance spectroscopy, cyclic voltammetry and compatibility studies. The ionic conductivity and thermal stability of the polymer membranes were enhanced significantly by addition of nanofiller. The compatibility studies reveal that filler incorporated membrane is better compatible with lithium interface than filler free electrolyte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Choi NS, Lee YG, Park JK, Ko JM (2001) Electrochim Acta 46:1453

    Article  CAS  Google Scholar 

  2. Armand MB (1983) Solid State Ionics 9:745

    Article  Google Scholar 

  3. Chao S, Wringhton MS (1987) J Am Chem Soc 109:2197

    Article  CAS  Google Scholar 

  4. Manuel Stephan A, Nahm KS (2006) Polymer 47:5952

    Article  Google Scholar 

  5. Majeti Ravikumar NV (2000) React Funct Polym 46:1

    Article  Google Scholar 

  6. Hirano S (1999) Polym Int 48:732

    Article  CAS  Google Scholar 

  7. Entsar Abdou S, Khaled Nagy SA, Maher Elsabee Z (2008) Bioresour Technol 99:1359

    Article  Google Scholar 

  8. Rajendran S, Uma T, Mahalingam T (1999) Ionics 5:232

    Article  CAS  Google Scholar 

  9. Shin JH, Kim KW, Ahn HJ, Ahn JH (2002) Mater Sci Eng B 95:148

    Article  Google Scholar 

  10. Sickierski M, Walkiewicz A, Celemeneka A, Wycislik H (2006) J New Mater Electrochem Syst 9:367

    Google Scholar 

  11. Manuel Stephan A, Nahm KS, Premkumar T, Anbu Kulandhainathan M, Ravi G, Wilson J (2006) J Appl Electrochem 36:1091

    Article  CAS  Google Scholar 

  12. Ramesh S, Ang GP (2010) Ionics 16:465

    Article  CAS  Google Scholar 

  13. Thanikaikarasan S, Mahalingam T, Sundaram K, Kathalingam A, Yong Deak Kim, Taekyu Kim (2009) Vacuum 83:1066

    Article  CAS  Google Scholar 

  14. Angulakshmi N, Sabu Thomas, Nahm KS, Manuel Stephan A, Nimma Elizabeth R (2010) Ionics 17:407

    Article  Google Scholar 

  15. Baskaran R, Selvasekarapandian S, Kuwata N, Kawamura J, Hattori T (2006) Mater Chem Phys 98:55

    Article  CAS  Google Scholar 

  16. Capiglia C, Yang J, Imanishi N, Hirano A, Takeda Y, Yamamoto (2003) J Power Sources 119:826

    Article  Google Scholar 

  17. Wieczoreck W, Florjanczyk Z, Stevens JR (1996) Solid State Ionics 40:67

    Article  Google Scholar 

  18. Angulakshmi N, Premkumar T, Sabu Thomas, Manuel Stephan A (2010) Electrochim Acta 55:1401

    Article  CAS  Google Scholar 

  19. Manuel Stephan A, Premkumar T, Anbu Kulandainathan M, Angulakshmi N (2009) J Phys Chem B 113:1963

    Article  Google Scholar 

  20. Sukeshini M, Nishimoto A, Watanabe M (1996) Solid State Ionics 86:385

    Article  Google Scholar 

  21. Ding Y, Zhang P, Long Z, Jiang Y, Xu F, Di W (2009) J Membr Sci 329:56

    Article  CAS  Google Scholar 

  22. Ramesh S, Arof AK (2000) Solid State Ionics 136:1197

    Article  Google Scholar 

  23. Wieczoreck W, Przyłuski J (1989) Solid State Ionics 36:136

    Google Scholar 

  24. Wieczoreck W, Siekierski M (2008) Nanocomposites. In: Knauth P, Schoonman J (eds) Ionic conducting materials and structural spectroscopies. Springer, New York, pp 1–72

    Google Scholar 

  25. Johan MR, Fen LB (2010) Ionics 16:335

    Article  CAS  Google Scholar 

  26. Croce F, Bonino F, Scrosati B (1991) J Electrochem Soc 138:1918

    Article  Google Scholar 

  27. Park JW, Jeong ED, Won M-S, Shim Y-B (2006) J Power Sources 160:674

    Article  CAS  Google Scholar 

  28. Nookala M, Kumar B, Rodrigues S (2002) J Power Sources 111:165

    Article  CAS  Google Scholar 

  29. Manuel Stephan A, Nahm KS, Premkumar T, Anbu Kulandhainathan M, Ravi G, Wilson J (2006) J Power Sources 159:1316

    Article  Google Scholar 

  30. Saika D, Kumar A (2004) Electrochim Acta 49:2581

    Article  Google Scholar 

Download references

Acknowledgement

The authors XSS and SB gratefully acknowledge the financial support received from the Department of Science and Technology (DST), New Delhi, India, for carrying out this project (sanction No SR/S1/PC54/2009 dated 17.6.2010). We also acknowledge the help rendered by Orchid Pharmaceuticals, Chennai, for characterization studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Sahaya Shajan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karuppasamy, K., Thanikaikarasan, S., Antony, R. et al. Effect of nanochitosan on electrochemical, interfacial and thermal properties of composite solid polymer electrolytes. Ionics 18, 737–745 (2012). https://doi.org/10.1007/s11581-012-0678-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-012-0678-z

Keywords

Navigation